SLIDES

SERIES SIP, SHP, SJP \& STP RAIL BEARING

Series SJP

INDEX:

Series SIP
Ordering Data
Page 5A-2
Benefits
Page 5A-3
Dimensions
Page 5A-4
Engineering Data
Pages 5A-5 to 5A-9
Options
Page 5A-10
Series SHP
Ordering Data
Page 5A-12

Benefits

Page 5A-13
Dimensions
Pages 5A-14 and 5A-15
Engineering Data
Pages 5A-16 to 5A-18
Option
Page 5A-19
Series SJP
Ordering Data
Page 5A-26
Benefits
Page 5A-27
Dimensions
Page 5A-28
Engineering Data
Pages 5A-29 and 5A-30
Options
Page 5A-31
Series STP
Ordering Data
Page 5A-32

Benefits

Page 5A-33
Dimensions
Pages 5A-34 to 5A-35
Engineering Data
Pages 5A-36 to 5A-37
Slide Sizing Example
Page 5A-38
Options
Pages 5A-39 to 5A-40
Accessories
Page 5A-41

Stopping Capacity
Page 5A-42

Shock Absorber
Selection Guide
Pages 5A-43 to 5A-44

ORDERING DATA: SERIES SIP RAIL BEARING SLIDES

TO ORDER SPECIFY:
Product, Series, Type, Design No., Size, Travel, and Options.

PART NO.	DESCRIPTION
$67902-1-02$	NPN (Sink) or PNP (Source) DC Reed, 2 m cable
67902-1-05	NPN (Sink) or PNP (Source) DC Reed, 5 m cable
$67903-1-02$	NPN (Sink) DC Solid State, 2 m cable
$67903-1-05$	NPN (Sink) DC Solid State, 5 m cable
$67904-1-02$	PNP (Source) DC Solid State, 2 m cable
$67904-1-05$	PNP (Source) DC Solid State, 5 m cable
$67922-1$	NPN (Sink) or PNP (Source) DC Reed, Quick Connect
$67923-1$	NPN (Sink) DC Solid State, Quick Connect
67924-1	PNP (Source) DC Solid State, Quick Connect
$63549-02$	2 m Cordset with Quick Connect
$63549-05$	5 m Cordset with Quick Connect

NOTE:

* Consult PHD for additional bore sizes and travel increments.

BENEFITS: SERIES SIP RAIL BEARING SLIDES

BENEFITS

- Series SIP Slides use rail bearing technology to provide smooth, precise movement with high accuracy within confined spaces.
- Available in three bore sizes with a choice of three travel lengths each.
- Standard internal shock pads eliminate metal to metal contact; reducing noise and end-of-travel impact forces.
- Standard Series SIP Slide feature mounting holes on the end and bottom of the body.
- The slide body incorporates switch slots for convenient mounting of PHD's Series 67904 mm reed and solid state switches. Magnet option (-M) is required when using Series 6790 Switches.
- Series SIP Slides offer optional 5 mm of travel adjustment on extend (-AE) or retract (-AR). Specify -AE option for extend travel adjustment, -AR for retract travel adjustment, or -AE-AR for both.

SPECIFICATIONS	BORE SIZE					
	in	mm				
POWER SOURCE MAX. OPERATING PRESSURE OPERATING TEMPERATURERANGE	$\begin{aligned} & \text { Integral pneumatic cylinder } \\ & 100 \mathrm{psi}[7 \mathrm{bar}] \\ & -20^{\circ} \text { to } 180^{\circ} \mathrm{F}\left[-29^{\circ} \text { to } 82^{\circ} \mathrm{C}\right] \end{aligned}$					
TRAVES	$\begin{gathered} \hline .394 \\ .984 \\ 1.969 \\ \hline \end{gathered}$	$\begin{aligned} & 10 \\ & 25 \\ & 50 \\ & \hline \end{aligned}$	$\begin{gathered} .984 \\ 1.969 \\ 2.953 \\ \hline \end{gathered}$	$\begin{aligned} & 25 \\ & 50 \\ & 75 \\ & \hline \end{aligned}$	$\begin{gathered} \hline .984 \\ 1.969 \\ 2.953 \\ \hline \end{gathered}$	$\begin{aligned} & 25 \\ & 50 \\ & 75 \\ & \hline \end{aligned}$
STANDARD ÆATURES BEARINGS BODY TOOL PLATE	Multiple port positions, dual mounting positions Stainless steel ground rail bearing system with recirculating ball bearings Anodized aluminum alloy Anodized aluminum alloy					

FORCE TABLE

	SIZE 12		SIZE 16		SIZE 20	
DIRECTION	$\mathbf{l b} / \mathbf{p s i}$		N/bar	lb/psi	N/bar	lb/psi
N/bar						
EXIEND	.176	11.4	.314	20.3	.486	31.4
REIRACT	.133	8.6	.270	17.4	.409	26.4

DIMENSIONS: SERIES SIP RAIL BEARING SLIDES

NOTES:

1) DESIGNATED \& IS CENIERLINE OF UNIT
2) MEIRICINFORMATION SHOWNIN []
3) CIRCLED NUMBERS INDICATE POSITION CALLOUT

ENGINEERING DATA: SERIES SIP RAIL BEARING SLIDES

PRESSURE RATINGS

All Series SIP Slides have an operating pressure range of 20 psi minimum to 100 psi maximum [1.4 to 6.9 bar]. Maximum life will be achieved when pressure and velocity are no greater than necessary for proper operation. External flow controls are recommended. Series SIP Slides feature standard pneumatic ports on the end and both sides of the slide body, and are provided with the end ports ready for use and the side ports plugged with set screws and thread sealant.

OPERATING TEMPERATURE

Series SIP Slides are designed for use in temperatures between -20° to $180^{\circ} \mathrm{F}\left[-29^{\circ}\right.$ to $\left.82^{\circ} \mathrm{C}\right]$. For temperatures outside this range, consult PHD.

SEALS

Series SIP Slides utilize urethane and Nitrile seals which are compatible with standard paraffin-based lubrication oils used for pneumatic cylinders. For compatibility with other fluids, consult PHD.

LUBRICATION

All units are prelubricated at the factory for service under normal operating conditions. Slides are designed and tested with non-lubricated air. However, the use of lubricated air will extend life.

MATERIAL SPECIFICATIONS

The slide housing and tool plate are anodized aluminum alloy. Linear rail and bearings are hardened and ground stainless steel.

MAINTENANCE

Common with most PHD products, these slides are fully field repairable. Repair kits and main structural components are available as needed for extended service life.

TOTAL TRAVEL LENGTH AND WEIGHT

For standard units the tolerance of nominal travel lengths is $+.039 /-.000[+1 \mathrm{~mm} /-0 \mathrm{~mm}]$. See Options section of catalog for details regarding units with travel adjustment option (-AE or -AR).

SIZE	NOMINAL TRAVEL		UNIT	
	mm	BASE WEIGHT		
	kg			
12	$(.394)$	10	.30	.14
	$(.984)$	25	.35	.16
	(1.969)	50	.46	.21
16	(1.984)	25	.71	.32
	(1.969)	50	.88	.40
	(2.953)	75	1.04	.47
20	$(.984)$	25	1.04	.47
	(1.969)	50	1.26	.57
	(2.953)	75	1.48	.67

MOUNTING INSTRUCTIONS

PHD recommends mounting load or tooling with tool plate retracted. Support tool plate while tightening fasteners. Maximum mounting torques (for screw thread engagement of one diameter or greater):

SIZE	in-Ib	Nm
M2	2.6	0.3
M3	9	1.0
M4	18	2.0

ENGINEERING DATA: SERIES SIP RAIL BEARING SLIDES

SLIDE SELECTION

There are three major factors to consider when selecting a slide: thrust capacity, dynamic moment capacity, and the allowable velocity.

1 THRUST CAPACITY

Use the theoretical force output table to determine if thrust is sufficient for the applied load.

2 DYNAMIC MOMENT CAPACITY

The Dynamic Moment Load graphs (pages 5A-7 to 5A-9) show the allowable load for the three most common mounting positions of the Series SIP Slide. Determine the distance " x " from the edge of the tool plate to the load center of gravity. Use the appropriate graph for the loading condition to determine the allowable load. It is generally best to keep the center of gravity of the load as close to the slide as possible. If the application requires combined loading such as a horizontal pitch load combined with a roll load, if static loads exceed dynamic loads, or if there are other questions concerning the selection of an appropriate slide, please contact PHD's Oustomer Service Department.

3 ALLOWABLE VELOCITY
Use the allowable velocity graph to verify that the slide selected can carry the payload at the desired velocity.

ALLOWABLE LOAD VS. VELOCITY

THEOREICAL FORCE OUTPUT TABLE Ib [N]

SIZE	DIRECTION	OPERATING PRESSUR								
		$\begin{gathered} 20 \mathrm{psi} \\ \text { [1.4 bar] } \end{gathered}$	$\begin{gathered} 30 \mathrm{psi} \\ \text { [2.1 bar] } \end{gathered}$	$\begin{gathered} 40 \mathrm{psi} \\ \text { [2.8 bar]] } \end{gathered}$	$\begin{gathered} 50 \mathrm{psi} \\ \text { [3.4 bar]] } \end{gathered}$	$\begin{gathered} 60 \mathrm{psi} \\ \text { [4.1 bar]] } \end{gathered}$	$\begin{gathered} 70 \mathrm{psi} \\ \text { [4.8 bar] } \end{gathered}$	$\begin{gathered} 80 \mathrm{psi} \\ \text { [} 5.5 \text { bar] } \end{gathered}$	$\begin{gathered} 90 \mathrm{psi} \\ \text { [6.2 bar] } \end{gathered}$	100 psi [6.9 bar]
12	REIRACT	$\begin{gathered} 2.7 \\ {[12.0]} \end{gathered}$	$\begin{gathered} 4.0 \\ {[17.8]} \end{gathered}$	$\begin{gathered} 5.3 \\ {[23.6]} \end{gathered}$	$\begin{gathered} 6.7 \\ {[29.8]} \end{gathered}$	$\begin{gathered} 8.0 \\ {[35.6]} \end{gathered}$	$\begin{gathered} 9.3 \\ {[41.3]} \end{gathered}$	$\begin{gathered} 10.7 \\ {[47.6]} \end{gathered}$	$\begin{array}{r} 12.0 \\ {[53.3]} \end{array}$	$\begin{gathered} 13.3 \\ {[59.1]} \end{gathered}$
	EXTEND	$\begin{gathered} 3.5 \\ {[15.6]} \end{gathered}$	$\begin{gathered} 5.3 \\ {[23.6]} \end{gathered}$	$\begin{gathered} 7.1 \\ {[31.6]} \end{gathered}$	$\begin{gathered} 8.8 \\ {[39.1]} \end{gathered}$	$\begin{gathered} 10.6 \\ {[47.1]} \end{gathered}$	$\begin{gathered} 12.4 \\ {[55.1]} \\ \hline \end{gathered}$	$\begin{gathered} 14.1 \\ {[62.7]} \end{gathered}$	$\begin{array}{r} 15.9 \\ {[70.7]} \end{array}$	$\begin{array}{r} 17.6 \\ {[78.2]} \end{array}$
16	REIRACT	$\begin{gathered} 5.4 \\ {[24.0]} \end{gathered}$	$\begin{gathered} 8.1 \\ {[36.0]} \end{gathered}$	$\begin{array}{r} 10.8 \\ {[48.0]} \\ \hline \end{array}$	$\begin{gathered} 13.5 \\ {[60.0]} \\ \hline \end{gathered}$	$\begin{gathered} 16.2 \\ {[72.0]} \\ \hline \end{gathered}$	$\begin{gathered} 18.9 \\ {[84.0]} \\ \hline \end{gathered}$	$\begin{gathered} 21.6 \\ {[96.0]} \end{gathered}$	$\begin{gathered} 24.3 \\ {[108.0]} \\ \hline \end{gathered}$	$\begin{gathered} 27.0 \\ {[120.0]} \end{gathered}$
	EXTEND	$\begin{gathered} 6.3 \\ {[28.0]} \\ \hline \end{gathered}$	$\begin{gathered} 9.4 \\ {[41.8]} \end{gathered}$	$\begin{array}{r} 12.5 \\ {[55.6]} \\ \hline \end{array}$	$\begin{gathered} 15.7 \\ {[69.8]} \end{gathered}$	$\begin{gathered} 18.8 \\ {[83.6]} \end{gathered}$	$\begin{gathered} 22.0 \\ {[97.8]} \end{gathered}$	$\begin{gathered} 25.1 \\ {[111.6]} \\ \hline \end{gathered}$	$\begin{gathered} 28.2 \\ {[125.3]} \end{gathered}$	$\begin{gathered} 31.4 \\ {[139.6]} \end{gathered}$
20	REIRACT	$\begin{gathered} 8.2 \\ {[37.0]} \end{gathered}$	$\begin{gathered} 12.3 \\ {[55.4]} \end{gathered}$	$\begin{array}{r} 16.4 \\ {[73.9]} \end{array}$	$\begin{gathered} 20.5 \\ {[89.8]} \end{gathered}$	$\begin{gathered} 24.5 \\ {[108.2]} \end{gathered}$	$\begin{gathered} 28.6 \\ {[126.7]} \end{gathered}$	$\begin{gathered} 32.7 \\ {[145.2]} \\ \hline \end{gathered}$	$\begin{gathered} 36.8 \\ {[163.7]} \end{gathered}$	$\begin{gathered} 40.9 \\ {[182.2]} \end{gathered}$
	EXTEND	$\begin{gathered} 9.7 \\ {[44.0]} \end{gathered}$	$\begin{gathered} 14.6 \\ {[65.9]} \end{gathered}$	$\begin{gathered} 19.4 \\ {[87.9]} \end{gathered}$	$\begin{gathered} 24.3 \\ {[106.8]} \end{gathered}$	$\begin{gathered} 29.2 \\ {[128.7]} \end{gathered}$	$\begin{gathered} 34.0 \\ {[150.7]} \end{gathered}$	$\begin{gathered} 38.9 \\ {[172.7]} \end{gathered}$	$\begin{gathered} 43.7 \\ {[194.7]} \end{gathered}$	$\begin{gathered} 48.6 \\ {[216.7]} \end{gathered}$

MAXIMUM DYNAMIC HORIZONTAL PITCH MOMENT LOADS

ENGINEERING DATA:' SERIES SIP SIZE 16, DYNAMIC MOMENT LOADS

MAXIMUM DYNAMIC VERTICAL PITCH MOMENT LOADS

MAXIMUM DYNAMIC ROLL MOMENT LOADS

$\begin{array}{cr}-\quad \text { SIP16x25 } \\ - \text { - } & \text { SIP16x50 } \\ \cdots & \text { SIP16x75 }\end{array}$

- SIP16x25
- - - SIP16x50
........... SIP16x75

—— SIP16x25, tool plate"0"
- - - SIP16x50, tool plate"0"
............ SIP16x75, tool plate"0"
- SIP16x25, rear pattern
- - - SIP16x50, rear pattern
............ SIP16x75, rear pattern

MAXIMUM DYNAMIC HORIZONTAL PITCH MOMENT LOADS

MAXIMUM DYNAMIC VERTICAL PITCH MOMENT LOADS

MAXIMUM DYNAMIC ROLL MOMENT LOADS

OPTIONS: SERIES SIP RAIL BEARING SLIDES

M

MAGNET FOR PHD SERIES 6790 REED AND SOLID STATE SWITCHES

This option equips the unit with a magnetic piston for use with PHD's Series 6790 Switch. The switch housing is contained by the slide housing and provides a very compact switch design. The switches mount easily into two small grooves located on the side of the slide housing and are locked into place with a set screw.

LEITER	SIZE 12		SIZE 16		SIZE 20	
DIM	in	mm	in	mm	in	mm
A	0.689	17.5	0.933	23.7	1.122	28.5
B	0.492	12.5	0.551	14	0.591	15

SERIES 6790 REED SWITCHES

SIZE	REPEATABILITY		HYSTERESIS MAXIMUM		BANDWIDTH MIN./MAX.	
	in	mm	in	mm	in	mm
12	+/-. 005	+/-. 13	0.060	1.5	. $380 / .400$	9.7/10.2
16	+/-. 005	+/-. 13	0.080	2.0	.220/.350	5.6/8.9
20	+/-. 005	+/-. 13	0.060	1.5	.335/. 750	8.5/19.0

SERIES 6790 SOLID STATE SWITCHES

SIZE	REPEATABILITY		HYSTERESIS MAXIMUM		BANDWIDTH MIN./MAX.	
	in	mm	in	mm	in	mm
12	+/-. 005	+/-. 13	0.060	1.5	.335/.630	8.5/16.0
16	+/-. 005	+/-. 13	0.080	2.0	.170/.490	4.3/12.4
20	+/-. 005	+/-. 13	0.060	1.5	.280/.670	7.1/17.0

AE
 TRAVEL ADJUSTMENT ON EXTEND

This option provides up to 5 mm of travel on extend. Travel adjustment is made using a spanner wrench or similar tool to engage the slots in the cartridge and rotating the cartridge to the desired position. Rotating the cartridge clockwise reduces the travel. Normal shock pad operation is maintained regardless of cartridge position. Travel adjustment has internal stops, preventing loss of components. The -AE option may be used in conjunction with the -AR option to provide travel adjustment at both ends of travel.

CARTRIDGE SLOT DETAIL

	"A"		"B"		"C" ROD			
SIZT	SLOT WIDTH		MAX TOOL DIA		CLEARANCE DIA		SLOT DEPTH	
in	mm	in	mm	in	mm	in	mm	
12	.062	1.6	.450	11.4	.215	5.5	.030	.8
16	.062	1.6	.600	15.2	.362	9.2	.060	1.5
20	.062	1.6	.817	20.8	.478	12.1	.060	1.5

AR
 TRAVEL ADJUSTMENT ON RETRACT

This option provides up to 5 mm of travel on retract. Travel adjustment is made using a flat-bladed screwdriver or similar tool to engage the slot in the bore plug and rotating the bore plug to the desired position. Rotating the bore plug clockwise reduces the travel. Normal shock pad operation is maintained regardless of bore plug position. Travel adjustment has internal stops, preventing loss of components. The-AR option may be used in conjunction with the -AE option to provide travel adjustment at both ends of travel.

BORE PLUG SLOT DETAIL

	"A" SLOT WIDTH		"B" MAX TOOL DIA		SLOT DEPTH	
SIZE	in	mm	in	mm	in	mm
12	.062	1.6	.450	11.4	.030	.8
16	.062	1.6	.600	15.2	.060	1.5
20	.062	1.6	.817	20.8	.060	1.5

TO ORDER SPECIFY：

Product，Series，Bearing Type，Design
No．，Size，Travel，and Option．

PART NO．	DESCRIPTION
$67902-1-02$	NPN（Sink）or PNP（Source）DC Reed， 2 m cable
$67902-1-05$	NPN（Sink）or PNP（Source）DC Reed， 5 m cable
$67903-1-02$	NPN（Sink）DC Solid State， 2 m cable
$67903-1-05$	NPN（Sink）DC Solid State， 5 m cable
$67904-1-02$	PNP（Source）DC Solid State， 2 m cable
$67904-1-05$	PNP（Source）DC Solid State， 5 m cable
67922－1	NPN（Sink）or PNP（Source）DC Reed，Quick Connect
$67923-1$	NPN（Sink）DC Solid State，Quick Connect
67924－1	PNP（Source）DC Solid State，Quick Connect
63549－02	2 m Cordset with Quick Connect
63549－05	5 m Cordset with Quick Connect

BENEFITS: SERIES SHP SLIDES WITH RAIL BEARING

BENEFITS

- Series SHP Slides use rail bearing technology to provide smooth, precise movement within confined spaces.
- Available in three bore sizes and five travel lengths.
- Standard travel adjustments for both extend and retract positions are conveniently located on the back of the slide. Integrated shock pads provide shock reduction throughout the full range of travel adjustment.
- Available in both imperial and metric versions for applications in worldwide markets.

- Standard Series SHP Slides provide multiple mounting options for maximum flexibility. Bodies feature mounting holes on sides, end, and bottom. Tool plates feature mounting on top and end.
- Standard dowel holes are provided on the body and both end and top tool plate mounting positions for precise mounting and attachment of tooling.
- Slide housing provides dual switch slots on either side for convenient mounting of PHD's Series 67904 mm Reed and Solid State switches. Magnet option (-M) is required when using switches.
Bore Plug-
on the
e
slots on
of PHD's
State
quired when

SPECIFICATIONS	BORE SIZE					
		mm				
POWER SOURCE MAX. OPERATINGPRESSURE OPERATING TEMPERATURE RANGE	$\begin{aligned} & \text { Integral pneumatic cylinder } \\ & 100 \mathrm{psi}[6.9 \mathrm{bar}] \\ & -20^{\circ} \text { to } 180^{\circ} \mathrm{F}\left[-29^{\circ} \text { to } 82^{\circ} \mathrm{C}\right] \end{aligned}$					
TRAVES	$\begin{gathered} .79 \\ 1.57 \end{gathered}$	$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\begin{gathered} .79 \\ 1.57 \end{gathered}$	$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\begin{gathered} \hline .59 \\ 1.38 \\ 2.17 \\ \hline \end{gathered}$	$\begin{aligned} & 15 \\ & 35 \\ & 55 \\ & \hline \end{aligned}$
TRAVE ADJUSTMENTS STANDARD ÆATURES BEARINGS BODY TOOL PLATE	Standard on both extend and retract Multiple port positions, multiple mounting positions, dowel pin holes Stainless steel ground rail bearing system with recirculating ball bearings Anodized aluminum alloy Anodized aluminum alloy					

FORCE TABLE						
	SIZE 08		SIZE 12		SIZE 16	
DIRECTION	lb/psi	N/B	$\mathbf{l b} / \mathbf{p s i}$	N/B	lb/psi	N/B
EXTEND	.079	5.1	.176	11.4	.314	20.3
REIRACT	.060	3.9	.133	8.6	.270	17.4

DIMENSIONS: SERIES SHP SLIDES - SIZE 08

๔た

DIMENSIONS: SERIES SHP SLIDES - SIZES 12 \& 16

[^0]
ENGINEERING DATA: sERIES SHP SLIDES

PRESSURE RATINGS

All Series SHP Slides have an operating pressure range of 20 psi minimum to 100 psi maximum [1.4 to 6.9 bar]. For longest slide life it is recommended that pressure and velocity be no greater than necessary for proper operation. Series SHP Slides incorporate internal orifices to help limit velocities. However, external flow controls are recommended at higher pressures or if slide operation results in strong impact loads at ends of travel. Series SHP Slides feature standard pneumatic ports on the end and both sides of the slide body, and are provided with the end ports ready for use and the side ports plugged with set screws and thread sealant.

OPERATING TEMPERATURE

Series SHP Slides are designed for use in temperatures between 20° to $180^{\circ} \mathrm{F}\left[-6^{\circ}\right.$ to $82^{\circ} \mathrm{C}$. For temperatures outside this range, consult PHD.

SEALS

Series SHP Slides utilize urethane and Nitrile seals which are compatible with standard paraffin-based lubrication oils used for pneumatic cylinders. For compatibility with other fluids, consult PHD.

LUBRICATION

All units are pre-lubricated at the factory for service under normal operating conditions. Slides are designed and tested with non-lubricated air. However, the use of lubricated air will extend life.

MATERIAL SPECIFICATIONS

The slide housing and tool plate are anodized aluminum alloy. Linear rail and bearings are hardened and ground stainless steel.

MAINTENANCE

In common with most PHD products, these slides are fully field repairable. Repair kits and main structural components are available as needed for extended service life.

UNIT WEIGHT				
SIZE	TRAVEL		WEIGHT	
	mm	lb	kg	
	.79	20	.20	.09
	1.57	40	.26	.12
12	.79	20	.38	.17
	1.57	40	.48	.22
16	.59	15	.56	.25
	1.38	35	.71	.32
	2.17	55	.85	.39

TRAVEL ADJUSTMENT

Standard Series SHP Slides provide travel adjustment in both the retract and extend directions. Travel adjustments are made using a small flat bladed or standard screwdriver via the adjustment holes located on the back of the slide. Series SHP Slides are designed to provide nominal travel. Using the travel adjustment screws allows reducing either the extend or retract travel by . 394 in [10 mm] (5 mm for SHP08).

Travel adjustment requires a small flat bladed screwdriver with a minimum shank length and diameter as shown in the table below. Blade thickness should not exceed .030 in [. 75 mm]. Travel adjustments should not be adjusted beyond positions shown in illustration. Loss of components or damage to the mechanism may occur if adjusted beyond the recommended limits.

ENGINEERING DATA: SERIES SHP SLIDES

SLIDE SELECTION

There are three major factors to consider when selecting a slide: thrust capacity, allowable mass, and dynamic moment capacity.

1 THRUST CAPACITY
Use the theoretical output table to determine if thrust is sufficient for the applied load.

2 MAXIMUM PAYLOAD CAPACITY
All Series SHP Slides come standard with end of travel shock pads. However, these shock pads are limited in the amount of energy that they can dissipate. Therefore, the slides have a maximum payload limit. Use the allowable velocity graph to verify that the slide can carry the payload at the desired velocity.

3 DYNAMIC MOMENT CAPACITY

The Dynamic Moment Load graphs show the allowable load for the three most common mounting positions of the Series SHP Slide. Determine the distance " x " from the edge of the tool plate to the load center of gravity. Use the graph appropriate for the loading condition to determine the allowable load. It is generally best to keep the load center of gravity as close to the slide as possible. (See next page for graphs.) If the application requires combined loading such as a horizontal pitch load combined with a roll load, if static loads exceed dynamic loads, or if there are other questions concerning the selection of an appropriate slide, please contact PHD's Oustomer Service Department.

SIZE 08

THEORETICAL OUTPUT TABLE Ib [N]

SIZE	DIRECTION	OPERATING PRESSURE								
		$\begin{gathered} 20 \mathrm{psi} \\ \text { [1.4 bar] } \end{gathered}$	$\begin{gathered} 30 \mathrm{psi} \\ {[2.1 \mathrm{bar}]} \end{gathered}$	$\begin{gathered} 40 \mathrm{psi} \\ \text { [2.8 bar] } \end{gathered}$	$\begin{gathered} 50 \mathrm{psi} \\ {[3.4 \mathrm{bar}]} \end{gathered}$	60 psi [4.1 bar]	70 psi [4.8 bar]	$\begin{gathered} 80 \mathrm{psi} \\ \text { [5.5 bar]] } \end{gathered}$	90 psi $[6.2 \mathrm{bar}]$	$\begin{gathered} 100 \mathrm{psi} \\ {[6.9 \mathrm{bar}]} \end{gathered}$
08	REIRACT	$\begin{gathered} 1.2 \\ {[5.3]} \\ \hline \end{gathered}$	$\begin{gathered} 1.8 \\ {[8.0]} \end{gathered}$	$\begin{gathered} 2.4 \\ {[10.7]} \end{gathered}$	$\begin{gathered} 3.0 \\ {[13.3]} \end{gathered}$	$\begin{gathered} 3.6 \\ {[16.0]} \end{gathered}$	$\begin{gathered} 4.2 \\ {[18.7]} \end{gathered}$	$\begin{gathered} 4.8 \\ {[21.3]} \end{gathered}$	$\begin{gathered} 5.4 \\ {[24.0]} \end{gathered}$	$\begin{gathered} 6.0 \\ {[26.7]} \\ \hline \end{gathered}$
	EXTEND	$\begin{gathered} 1.6 \\ {[7.1]} \\ \hline \end{gathered}$	$\begin{gathered} 2.4 \\ {[10.7]} \end{gathered}$	$\begin{gathered} 3.1 \\ {[13.8]} \end{gathered}$	$\begin{gathered} 3.9 \\ {[17.3]} \end{gathered}$	$\begin{gathered} 4.7 \\ {[20.9]} \end{gathered}$	$\begin{gathered} 5.5 \\ {[24.4]} \end{gathered}$	$\begin{gathered} 6.3 \\ {[28.0]} \\ \hline \end{gathered}$	$\begin{gathered} 7.1 \\ {[31.6]} \end{gathered}$	$\begin{gathered} 7.9 \\ {[35.1]} \end{gathered}$
12	REIRACT	$\begin{gathered} 2.7 \\ {[12.0]} \end{gathered}$	$\begin{gathered} 4.0 \\ {[17.8]} \end{gathered}$	$\begin{gathered} 5.3 \\ {[23.6]} \end{gathered}$	$\begin{gathered} 6.7 \\ {[29.8]} \end{gathered}$	$\begin{gathered} 8.0 \\ {[35.6]} \end{gathered}$	$\begin{gathered} 9.3 \\ {[41.3]} \end{gathered}$	$\begin{gathered} 10.7 \\ {[47.6]} \end{gathered}$	$\begin{gathered} 12.0 \\ {[53.3]} \end{gathered}$	$\begin{gathered} 13.3 \\ {[59.1]} \end{gathered}$
	EXTEND	$\begin{gathered} 3.5 \\ {[15.6]} \end{gathered}$	$\begin{gathered} 5.3 \\ {[23.6]} \end{gathered}$	$\begin{gathered} 7.1 \\ {[31.6]} \end{gathered}$	$\begin{gathered} 8.8 \\ {[39.1]} \end{gathered}$	$\begin{gathered} 10.6 \\ {[47.1]} \end{gathered}$	$\begin{gathered} 12.4 \\ {[55.1]} \\ \hline \end{gathered}$	$\begin{array}{r} 14.1 \\ {[62.7]} \\ \hline \end{array}$	$\begin{array}{r} 15.9 \\ {[70.7]} \\ \hline \end{array}$	$\begin{gathered} 17.6 \\ {[78.2]} \end{gathered}$
16	REIRACT	$\begin{gathered} 5.4 \\ {[24.0]} \end{gathered}$	$\begin{gathered} 8.1 \\ {[36.0]} \end{gathered}$	$\begin{gathered} 10.8 \\ {[48.0]} \\ \hline \end{gathered}$	$\begin{gathered} 13.5 \\ {[60.0]} \end{gathered}$	$\begin{gathered} 16.2 \\ {[72.0]} \\ \hline \end{gathered}$	$\begin{gathered} 18.9 \\ {[84.0]} \\ \hline \end{gathered}$	$\begin{gathered} 21.6 \\ {[96.0]} \\ \hline \end{gathered}$	$\begin{gathered} 24.3 \\ {[108.0]} \end{gathered}$	$\begin{gathered} 27.0 \\ {[120.0]} \\ \hline \end{gathered}$
	EXTEND	$\begin{gathered} 6.3 \\ {[28.0]} \end{gathered}$	$\begin{gathered} 9.4 \\ {[41.8]} \end{gathered}$	$\begin{gathered} 12.5 \\ {[55.6]} \end{gathered}$	$\begin{gathered} 15.7 \\ {[69.8]} \end{gathered}$	$\begin{gathered} 18.8 \\ {[83.6]} \end{gathered}$	$\begin{gathered} 22.0 \\ {[97.8]} \end{gathered}$	$\begin{gathered} 25.1 \\ {[111.6]} \end{gathered}$	$\begin{gathered} 28.2 \\ {[125.3]} \end{gathered}$	$\begin{gathered} 31.4 \\ {[139.6]} \end{gathered}$

UNIT	TRAVEL TIME
SHP08×20	0.1
SHP08×40	0.18
SHP12x20	0.18
SHP12x40	0.22
SHP 16×15	0.15
SHP16x35	0.2
SHP16x55	0.25
NOTES:	

NOTES:

1) Travel time is in seconds from application of pressure. 2) Travel times relatively independent of pressure between 60 and 100 psi.

MAXIMUM DYNAMIC HORIZONTAL PITCH MOMENT LOADS

SIZE 12

ENGINEERING DATA: sERIES SHP SLIDES

MAXIMUM DYNAMIC ROLL MOMENT LOADS

MAXIMUM DYNAMIC VERTICAL PITCH MOMENT LOADS

OPTION: sERIES SHP SLIDES

M
 MAGNET FOR PHD SERIES 6790 MINIATURE REED AND SOLID STATE SWITCHES

This option equips the unit with a magnetic piston for use with PHD's Series 6790 Switch. The switch housing is contained by the slide housing and provides a very compact switch design. The switches mount easily into two small grooves located on the side of the slide housing and are locked into place with a set screw.

PART NO.	DESCRIPTION
$67902-1-02$	NPN (Sink) or PNP (Source) DC Reed, 2 m cable
$67902-1-05$	NPN (Sink) or PNP (Source) DC Reed, 5 m cable
$67903-1-02$	NPN (Sink) DC Solid State, 2 m cable
$67903-1-05$	NPN (Sink) DC Solid State, 5 m cable
$67904-1-02$	PNP (Source) DC Solid State, 2 m cable
$67904-1-05$	PNP (Source) DC Solid State, 5 m cable
$67922-1$	NPN (Sink) or PNP (Source) DC Reed, Quick Connect
$67923-1$	NPN (Sink) DC Solid State, Quick Connect
$67924-1$	PNP (Source) DC Solid State, Quick Connect
$63549-02$	2 m Cordset with Quick Connect
$63549-05$	5 m Cordset with Quick Connect

REED BENEFITS

- Available as 4.5-30 VDC model for simple interfacing to sequencers and programmable controllers.
- Can be used to directly drive some types of relays or valve solenoids within the switch specifications stated.

SPECIFICATIONS	$\mathbf{6 7 9 0 2} \& \mathbf{6 7 9 2 2}$
OPERATING PRINCIPLE	Magnetic Reed
ACTUATED BY	Piston Magnet
INPUT VOLTAGE	$4.5-30$ VDC
OUTPUT TYPE	Contact Cosure
CURRENT RATING	50 mA Max.
OONTACT RESISTANCE	.1150 Om Max.
QNVIRONMENTAL	IP67
OPERATING TEMP.	-20° to $85^{\circ} \mathrm{C}$

SOLID STATE BENEFITS

- Solid state switches afford long life. Constant amplitude output allows use with most digital logic systems.
- Switch circuitry protects against voltage surges and other electrical anomalies associated with operating systems.
- Excellent switch hysteresis characteristics and symmetry.
- Offered in 4.5-30 VDC current sinking and current sourcing versions for simple interfacing to electronic system controllers.

SPECIFICATIONS	67903 \& $67923 \quad 67904$ \& 67924
OPGRATING PRINCIPLE	Solid State
ACTUATED BY	Piston Magnet
INPUT VOLTAGE	4.5-30 VDC
OUTPUT TYPE	NPN (Sink) PNP (Source)
CURRENT RATING	50 mA . Max
VOLTAGE DROP	. 5 VDC
SWITCH BURDEN	10 mA . Max.
ENVIRONMENTAL	IP67
OPERATING TEMP.	-20° to $85^{\circ} \mathrm{C}$

MALE QUICK CONNECT DETAIL

METRIC INFORMATION SHOWN IN[]

63549-xx CORDSET WITH FEMALE QUICK CONNECT

ORDERING DATA: SERIES SJP RAIL BEARING SLIDES

TO ORDER SPECIFY:
Product, Series, Bearing Type, Design No., Size, Travel, and Options.

PART NO.	DESCRIPTION
$67902-1-02$	NPN (Sink) or PNP (Source) DC Reed, 2 m cable
$67902-1-05$	NPN (Sink) or PNP (Source) DC Reed, 5 m cable
67903-1-02	NPN (Sink) DC Solid State, 2 m cable
67903-1-05	NPN (Sink) DC Solid State, 5 m cable
$67904-1-02$	PNP (Source) DC Solid State, 2 m cable
67904-1-05	PNP (Source) DC Solid State, 5 m cable
$67922-1$	NPN (Sink) or PNP (Source) DC Reed, Quick Connect
$67923-1$	NPN (Sink) DC Solid State, Quick Connect
67924-1	PNP (Source) DC Solid State, Quick Connect
$63549-02$	2 m Cordset with Quick Connect
$63549-05$	5 m Cordset with Quick Connect

NOTES:

* See page 5A-7 for use of the-MA option.
**Consult PHD for additional travel increments.

BENEFITS:' SERIES SJP RAIL BEARING SLIDES

BENEFITS

- This slide is designed to be an MRO drop-in. Consult PHD or your local distributor for unit compatibility.
- Series SJP Slides use rail bearing technology to provide smooth, precise movement with high accuracy within confined spaces.
- Available in three bore sizes with three travel lengths each.
- Standard internal shock pads eliminate metal to metal contact reducing noise and end-of-travel impact forces.
- Standard Series SJP Slides provide multiple mounting options for maximum flexibility. Bodies feature mounting holes on sides, end, and bottom.
- Slide body incorporates twin switch slots on both sides for convenient mounting of PHD's Series 67904 mm Reed and solid state switches. Magnet option -M is required when using Series 6790 Switches.

- Series SJP Slides can be fitted with certain competitor's switches. Magnet option -MA is required when using these switches.

SPECIFICATIONS	BORE SIZE				
	$\text { in } \quad \begin{aligned} & 08 \\ & \mathrm{~mm} \end{aligned}$				
POWER SOURCE MAX. OPRATINGPRESSURE OPGRATING TEMPERATURERANGE	$\begin{aligned} & \text { Integral pneumatic cylinder } \\ & 100 \text { psi [6.9 bar] } \\ & -20^{\circ} \text { to } 180^{\circ} \mathrm{F}\left[-29^{\circ} \text { to } 82^{\circ} \mathrm{C}\right] \end{aligned}$				
TRAVES	.394 10 .591 15 .984 25	$\begin{aligned} & .591 \\ & .787 \\ & .984 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \\ & 25 \\ & \hline \end{aligned}$	$\begin{array}{r} .591 \\ .984 \\ 1.181 \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & 25 \\ & 30 \end{aligned}$
STANDARD ÆATURES BEARINGS BODY TOOL PLATE	Multiple port positions, multiple mounting positions Stainless steel ground rail bearing system with recirculating ball bearings Anodized aluminum alloy Anodized aluminum alloy				

FORCE TABLE

	SIZE 08		SIZE 12		SIZE 16	
DIRECTION	lb/psi	N/bar	lb/psi	N/bar	lb/psi	N/bar
EXTEND	.079	5.1	.175	11.3	.314	20.3
REIRACT	.060	3.9	.132	8.5	.270	17.4

DIMENSIONS: SERIES SJP RAIL BEARING SLIDES

NOTES:

1) DESIGNATE $\&$ IS CENTERLINEOFUNIT.
2) MEIRIC INFORMATION SHOWN IN [].
3) CRQ_-D NUMBERS INDICATE POSITION CALLOU.

ENGINEERING DATA: SERIES SJP RAIL BEARING SLIDES

PRESSURE RATINGS

All Series SJP Slides have an operating pressure range of 20 psi minimum to 100 psi maximum [1.4 to 6.9 bar]. Maximum life will be achieved when pressure and velocity are no greater than necessary for proper operation. External flow controls are recommended. Series SJP Slides feature standard pneumatic ports on the end and both sides of the slide body, and are provided with the end ports ready for use and the side ports plugged with set screws and thread sealant.

OPERATING TEMPERATURE

Series SJP Slides are designed for use in temperatures between -20° to $180^{\circ} \mathrm{F}\left[-29^{\circ}\right.$ to $82^{\circ} \mathrm{C}$. For temperatures outside this range, consult PHD.

SEALS

Series SJP Slides utilize urethane and Nitrile seals which are compatible with standard paraffin-based lubrication oils used for pneumatic cylinders. For compatibility with other fluids, consult PHD.

LUBRICATION

All units are prelubricated at the factory for service under normal operating conditions. Slides are designed and tested with non-lubricated air. However, the use of lubricated air will extend life.

SLIDE SELECTION

There are three major factors to consider when selecting a slide: thrust capacity, dynamic moment capacity, and the allowable velocity.

1 THRUST CAPACITY
Use the theoretical force output table to determine if thrust is sufficient for the applied load.

2 DYNAMIC MOMENT CAPACITY
The Dynamic Moment Load graphs show the allowable load for the three most common mounting positions of the Series SJP Slide. Determine the distance " x " from the edge of the tool plate to the load

TOTAL TRAVEL LENGTH AND WEGGHT

Tolerance of minimum travel length is $+.039 /-.000$ [$+1 \mathrm{~mm} /-0 \mathrm{~mm}$].

SIZE	MINIMUM		TRAVEL	
	mm	BASE WEIGHT		
	kg			
08	$(.394)$	10	.16	.07
	$(.591)$	15	.18	.08
	$(.984)$	25	.21	.10
12	$(.591)$	15	.32	.15
	$(.787)$	20	.35	.16
	$(.984)$	25	.39	.18
16	$(.591)$	15	.57	.26
	$(.984)$	25	.65	.29
	(1.181)	30	.68	.31

MATERIAL SPECIFICATIONS

The slide housing and tool plate are anodized aluminum alloy. Linear rail and bearings are hardened and ground stainless steel.

MAINTENANCE

In common with most PHD products, these slides are fully field repairable. Repair kits and main structural components are available as needed for extended service life.

MOUNTING INSTRUCTIONS

PHD recommends to mount load or tooling with tool plate retracted. Support tool plate while tightening fasteners. Maximum mounting torques (for screw thread engagement of one diameter or greater):

FASTENER SIZE	in-lb	Nm
M3	9	1
M4	18	2
M5	35	4
*Mounting holes only, port fittings require less.		

THEORETICAL FORCE OUTPUT TABLE lb [N]

SIZE	DIRECTION	OPERATING PRESSURE								
		$\begin{gathered} 20 \mathrm{psi} \\ \text { [1.4 barl } \end{gathered}$	$\begin{gathered} 30 \mathrm{psi} \\ \text { [2.1 bar] } \end{gathered}$	$\begin{gathered} 40 \mathrm{psi} \\ {[2.8 \mathrm{bar}} \end{gathered}$	$\begin{gathered} 50 \mathrm{psi} \\ \text { [3.4 bar] } \end{gathered}$	$60 \mathrm{psi}$ [4.1 bar]	$\begin{gathered} 70 \mathrm{psi} \\ \text { [4.8 bar } \end{gathered}$	$\begin{gathered} 80 \mathrm{psi} \\ \text { [5.5 barl } \end{gathered}$	$\begin{gathered} 90 \mathrm{psi} \\ \text { [6.2 bar] } \end{gathered}$	$\begin{gathered} 100 \mathrm{psi} \\ \text { [6.9 bar] } \end{gathered}$
08	REIRACT	1.2	1.8	2.4	3.0	3.6	4.2	4.8	5.4	6.0
	EXTEND	1.6	[8.0] 2.4	$\frac{[10.7]}{3.1}$	[13.3] 3.9	$\frac{[16.0]}{4.7}$	[18.7]	$\frac{[21.3]}{6.3}$	$\frac{[24.0]}{7.1}$	7.9
		[7.1]	[10.7]	[13.8]	[17.3]	[20.9]	[24.4]	[28.0]	[31.6]	[35.1]
12	REIRACT	2.7	4.0	5.3	6.7	8.0	$\begin{gathered} 9.3 \\ {[41.31} \end{gathered}$	10.7	12.0	
	EXTEND	3.5	5.3	7.1	8.8	10.6	12.4	14.1	15.9	17.6
		[15.6]	[23.6]	[31.6]	[39.1]	[47.1]	[55.1]	[62.7]	[70.7]	[78.2]
16	REIRACT	5.4	8.1	10.8	13.5	16.2	18.9	21.6	24.3	27.0
		[24.0]	[36.0]	[48.0]	[60.0]	[72.0]	[84.0]	[96.0]	[108.0]	[120.0]
	EXTEND	6.3	9.4	12.5	15.7	18.8	22.0	25.1	28.2	31.4
		[28.0]	[41.8]	[55.6]	[69.8]	[83.6]	[97.8]	[111.6]	[125.3]	[139.6]

center of gravity. Use the appropriate graph for the loading condition to determine the allowable load. It is generally best to keep the center of gravity of the load as close to the slide as possible. (See next page for graphs.) If the application requires combined loading such as a horizontal pitch load combined with a roll load, if static loads exceed dynamic loads, or if there are other questions concerning the selection of an appropriate slide, please contact PHD's Customer Service Department.

3 ALLOWABLE VELOCITY

Use the allowable velocity graph at left to verify that the slide selected can carry the payload at the desired velocity.

ENGINEERING DATA: SERIES SJP RAIL BEARING SLIDES

MAXIMUM DYNAMIC HORIZONTAL PITCH MOMENT LOADS

SIZE 08

OPTIONS: SERIES SJP RAIL BEARING SLIDES

M
 MAGNET FOR PHD SERIES 6790 REED AND SOLID STATE SWITCHES

This option equips the unit with a magnetic piston for use with PHD's Series 6790 Switch. The switch housing is contained by the slide housing and provides a very compact switch design. The switches mount easily into two small grooves located on the side of the slide housing and are locked into place with a set screw.

LETTER	SIZE 08		SIZE 12		SIZE 16	
DIM	in	mm	in	mm	in	mm
A	0.496	12.6	0.645	16.4	0.786	20.0
B	0.712	18.1	0.844	21.4	0.972	24.7
C	0.297	7.5	0.388	9.9	0.447	11.4

REED BENEFITS

- Available as 4.5-30 VDC model for simple interfacing to sequencers and programmable controllers.
- Can be used to directly drive some types of relays or valve solenoids within the switch specifications stated.

SPECIFICATIONS	$67902 \& 67922$
OPERATING PRINCIPLE	Magnetic Reed
ACTUATED BY	Piston Magnet
INPUT VOLTAGE	$4.5-30$ VDC
OUTPUT TYPE	Contact Cosure
CURRENT RATING	50 mA Max.
OONTACT RESISTANCE	.115 Ohm Max.
ENVRONMENTAL	IP67
OPERATING TEMP.	-20° to $85^{\circ} \mathrm{C}$

MAGNET FOR COMPETITOR'S REED AND SOLID STATE SWITCHES

The Series SJP can be used as an exact drop-in replacement for a competitor's commercially available rail slide. If the Series SJP is being used to replace the competitor's slide, and you wish to continue using their switches, the MA option must be specified. For additional information and switch compatibility, contact your local PHD distributor or PHD customer service.

PART NO.	DESCRIPTION
67902-1-02	NPN (Sink) or PNP (Source) DC Reed, 2 m cable
67902-1-05	NPN (Sink) or PNP (Source) DC Reed, 5 m cable
$67903-1-02$	NPN (Sink) DC Solid State, 2 m cable
$67903-1-05$	NPN (Sink) DC Solid State, 5 m cable
67904-1-02	PNP (Source) DC Solid State, 2 m cable
67904-1-05	PNP (Source) DC Solid State, 5 m cable
$67922-1$	NPN (Sink) or PNP (Source) DCReed, Quick Connect
$67923-1$	NPN (Sink) DC Solid State, Quick Connect
67924-1	PNP (Source) DC Solid State, Quick Connect
$63549-02$	2 m Cordset with Quick Connect
$63549-05$	5 m Cordset with Quick Connect

SOLID STATE BENEFITS

- Solid state switches afford long life. Constant amplitude output allows use with most digital logic systems.
- Switch circuitry protects against voltage surges and other electrical anomalies associated with operating systems.
- Excellent switch hysteresis characteristics and symmetry.
- Offered in 4.5-30 VDC current sinking and current sourcing versions for simple interfacing to electronic system controllers.

SPECIFICATIONS	67903 \& $67923 \quad 67904$ \& 67924
OPERATING PRINCIPLE	Solid State
ACTUATED BY	Piston Magnet
INPUT VOLTAGE	4.5-30 VDC
OUTPUT TYPE	NPN (Sink) PNP (Source)
QURRENT RATING	50 mA Max
VOLTAGE DROP	. 5 VDC
SWITCHBURDEN	10 mA . Max.
ENVIRONMENTAL	IP67
OPERATINGTEMP.	-20° to $85^{\circ} \mathrm{C}$

MALE QUICK CONNECT DETAIL

METRIC INFORMATIONSHOWN IN[]

63549-xx CORDSET WITH FEMALE QUICK CONNECT

(800) 624-8511

TO ORDER SPECIFY:

Product, Series, Bearing Type, Carriage
Style, Design No., Size, Travel, Travel
Adjustment, Shock Absorber Installed, and Miscellaneous Options.

SHOCK ABSORBER INSTAUED OPTION
NE1x - Shock absorber installed on extend, position 1
NE2x - Shock absorber installed on extend, position 2
NRx - Shock absorber installed on retract
" x " indicates shock absorber dampening constant (2 or 3) which must be specified by the customer.

BENEFITS: SERIES STP SLIDES WITH RAIL BEARING

BENEFITS

- Series STP Slides provide smooth precise linear motion with high accuracy at twice the thrust of a single bore cylinder.
- Available in five bore sizes with a choice of three travel lengths to fit a wide range of applications. Optional travel adjustments allow precise adjustment of travel.
- Available in both imperial and metric versions for applications in worldwide markets.
- Standard internal and external shock pads eliminate metal to metal contact reducing noise and end-of-travel impact forces.
- Fully integrated shock absorbers and travel adjustments with shock pads allow easy adjustment from back of slide while not increasing overall package width.
- Shock absorbers and travel adjustments on retract eliminate pitch and yaw moments usually associated with externally mounted shocks and travel adjustments.
- Series STP units have increased stopping capacity and minimal deflection when travel adjustment and/or shock absorbers are used in both positions.
- Slide housing incorporates twin switch slots for flush installation of PHD's new Series 6790 reed and solid state switches.
- Consult PHD for 4 mm and 8 mm proximity switch ready units.
- All units have customer mounting and dowel holes in the housing, carriage, and tool plate.
- Modular mounting kits allow quick connect of same size Series STP Slides without the need for transition plates. See page 5A-34 for details.
- Standard stainless steel fasteners eliminate the need for costly corrosion resistant options. Combining this with -Q6 shaft option provides a completely corrosion resistant unit.

	BORE SIZE
SPECIFICATIONS	$\mathbf{0 8} \quad$ 12, 16, 20, \& 25
POWER SOURCE	Two cylinders built into the Slide Body
WORKING PRESSURE	20 psi min -150 psi max at zero load
TEMPERATURERANGE	-20° to $+180^{\circ} \mathrm{F}\left[-29^{\circ}\right.$ to $\left.82^{\circ} \mathrm{C}\right]$
LUBRICATION	Permanent for Non-Lubricated or Lubricated Air
GUIDE SHAFTS	Stainless Steel Chrome Plated Steel
BEARINGS	Stainless Steel Ground Rail System with Recirculating Ball Bearings
CARRIAGE	Anodized Aluminum Alloy
TOOL PLATE	Anodized Aluminum Alloy
BODY	Anodized Aluminum Alloy

NOTES
1）ALL DIMENSIONS ARE SYMMEIRICAL ABOUT CENIERLINEOF DOWE HO ES UNIESS OTHERWISESPECIAED
2）MEIRIC INFORMATION SHOWNIN［ ］
3）RUNNING PARALLE ISM TODATUM A IS ． 002 in $[.05 \mathrm{~mm}]$ AT 2 in ［ 50 mm ］OF TRAVE．
4）$\perp=$ PERPENDICULARITY TOLERANCE，THIS DEIERMINES HOW FAR 円ROM 90° THAT THE INDICATED ÆATURES CAN BE TOTHE INDICATED DATUM ÆATURES．THIS SURFACEIS ORIENIED（ 90° ） TO THE INDICATED DATUM SURFACES WITHIN A TO－囚RANCE BAND OF． 005 ［．13］
5）$/ /=$ PARALLEISM TOLERANCE THIS TOLERANCE DEIERMINES HOW PARALLE（ 180° ）THAT THE INDICATED 氏ATURES CAN BE TOTHE INDICATEDATM TATURES TIESURFACEISPARAL （ 180° ）TOTHEINDICATED DATUM SURFAOESWITHINATO－RANOE BAND OF． 005 ［．13］

MEIRIC INFORMATION SHOWN IN [].

ENGINEERING DATA: SERIES STP SLIDES WITH RAIL BEARING

PRESSURE RATINGS

All Series STP Slides have an operating pressure range of 20 psi minimum to 150 psi maximum [1.4 to 10 bar].

BREAKAWAY

Units have less than 20 psi [1.4 bar] breakaway with zero load.

OPERATING TEMPERATURE

Series STP Slides are designed for use in temperatures between 20° to $180^{\circ} \mathrm{F}\left[-6^{\circ}\right.$ to $82^{\circ} \mathrm{C}$. For temperatures outside this range, consult PHD.

SEALS

Series STP Slides utilize urethane and Nitrile seals which are compatible with standard paraffin-based lubrication oils used for pneumatic cylinders. For compatibility with other fluids, consult PHD.

LUBRICATION

All units are pre-lubricated at the factory for service under normal operating conditions. Slides are designed and tested with non-lubricated air. However, the use of lubricated air will extend life.

OPERATING SLIDE VELOCITY

For sizes 08 and 12 , slide velocity is $36 \mathrm{in} / \mathrm{sec}$ [$914 \mathrm{~mm} / \mathrm{sec}$] for extend and $24 \mathrm{in} / \mathrm{sec}$ [$610 \mathrm{~mm} / \mathrm{sec}$] on retract. For sizes 16,20 , and 25 , slide velocity is $30 \mathrm{in} / \mathrm{sec}$ [$962 \mathrm{~mm} / \mathrm{sec}$] for extend and 24 $\mathrm{in} / \mathrm{sec}$ [$610 \mathrm{~mm} / \mathrm{sec}$] on retract. These values are based on an unloaded slide at 87 psi [6 bar] operating pressure.

MATERIAL SPECIFICATIONS

The slide housing, tool plate, and carriage are anodized aluminum alloy. Linear rails and bearings are hardened and ground stainless steel. On standard sizes 12, 16, 20, and 25 slides, the shafts are hard chrome plated steel. Size 08 slides have stainless steel shafts. The corrosion resistant option on sizes 12, 16, 20, and 25 provides hard chrome plated stainless steel shafts.

MAINTENANCE

In common with most PHD products, these slides are fully field repairable. Repair kits and main structural components are available as needed for extended service life.

TOTAL TRAVEL LENGTH

Tolerance on specified minimum travel length is $+.098 /-.000$ [$+2.5 \mathrm{~mm} /-0 \mathrm{~mm}$].

	MINIMUM SIZE	
TRAVEL		
	mm	
08	1	25
	2	51
	3	76
12	1	25
	2.5	64
	4	102
16	$1-1 / 2$	38
	3	76
	5	127
20	2	51
	4	102
	6	152
25	2	51
	4	102
	6	152

UNIT WEGHT

SIZE	TRAVEL		BASE WEIGHT		OPTION ADDERS							
			-AR	-NRx		-AEx OR NEx						
	in	mm			lb	kg	lb	kg	lb	kg	lb	kg
08	1	25	0.55	0.25	0.03	0.014	0.11	0.05	0.06	0.03		
	2	50	0.81	0.37	0.04	0.018	0.11	0.05				
	3	75	1.01	0.46	0.05	0.023	0.11	0.05				
12	1	25	1.12	0.51	0.10	0.05	0.09	0.04	0.09	0.04		
	2-1/2	60	1.71	0.78	0.15	0.07	0.178	0.08				
	4	100	2.26	1.03	0.20	0.09	0.298	0.14				
16	1-1/2	38	2.10	0.95	0.22	0.10	0.19	0.09	0.13	0.06		
	3	75	2.68	1.22	0.29	0.13	0.26	0.12				
	5	125	3.63	1.65	0.40	0.18	0.37	0.17				
20	2	50	3.62	1.64	0.65	0.30	0.32	0.15	0.27	0.12		
	4	100	5.24	2.38	0.85	0.39	0.512	0.23				
	6	150	6.64	3.01	1.03	0.47	0.687	0.31				
25	2	50	5.46	2.48	0.57	0.26	0.42	0.19	0.29	0.13		
	4	100	7.55	3.43	0.87	0.39	0.73	0.33				
	6	150	9.55	4.34	1.16	0.53	1.02	0.46				

ENGINEERING DATA: SERIES STP SLIDES WITH RAIL BEARING

SLIDE SELECTION

There are three major factors to consider when selecting a slide: thrust capacity, allowable static and dynamic moment capacity, and table deflection (as either pitch, yaw, or roll).

1 THRUST CAPACITY

Use the effective piston area (seethrust specifications) of the slide to determine if thrust is sufficient for the applied load.

2 STATIC AND DYNAMIC MOMENT CAPACITY
The maximum static moments for all units are listed in the static moment chart below and must not be exceeded. The maximum allowable dynamic moment is equal to $1 / 10$ the maximum static moment in consideration of the load inertia. Calculate static and dynamic moments of the system using the following equations and diagrams:

Mp (Pitch) $=(\mathrm{Ah}+\mathrm{OG}) \times$ LOAD or $(\mathrm{Av}+\mathrm{OG}) \times$ LOAD
My (Yaw) $=(\mathrm{Ah}+\mathrm{OG}) \times$ LOAD or OG \times LOAD
$\mathrm{Mr}($ Roll $)=(\mathrm{Av}+\mathrm{OG}) \times$ LOAD or $\mathrm{CG} \times$ LOAD

THRUST SPECIFICATIONS

SIZE	SHAFT DIAMETER		BORE DIAMETER		$\begin{aligned} & \text { SHAFT } \\ & \text { DIRECTION } \end{aligned}$	EFFECTIVE PISTON AREA	
08	0.157	4	0.315	8	EXITND	0.16	101
					REIRACT	0.12	75
12	0.236	6	0.475	12	EXTEND	0.35	229
					REIRACT	0.27	172
16	0.315	8	0.630	16	EXTEND	0.62	402
					REIRACT	0.47	302
20	0.394	10	0.787	20	EXIEND	0.97	628
					REIRACT	0.73	470
25	0.472	12	0.984	25	EXTEND	1.52	982
					REIRACT	1.17	756

CYLINDER THRUST CALCULATION			
	IMPERIAL	METRIC	
	$\mathrm{F}=\mathrm{P} \times \mathrm{A}$	$\mathrm{F}=0.1 \times \mathrm{P} \times \mathrm{A}$	
$\mathrm{F}=$ Cylinder Force	lb	N	
$\mathrm{P}=$ Operating Pressure	psi	bar	
$\mathrm{A}=$ Effective Area	in^{2}	$\mathrm{~mm}^{2}$	

(continued on next six pages)
STATIC MOMENT CHART

SIZE	TRAVEL		MAX PITCH MOMENT (Mp)		MAX YAW MOMENT (My)		MAX ROLL MOMENT (Mr)		MOMENT ARM Ah		MOMENT ARM Av	
	in	mm	in-lb	Nm	in-lb	Nm	in-lb	Nm	in	mm	in	mm
08	1	25	42.4	4.8	42.4	4.8	67	7.6	2.442	62.0		
	2	50	168	19.0	141	15.9	76	8.6	3.830	97.3	0.335	8.5
	3	75	227	25.6	190	21.5	76	8.6	4.914	124.8		
12	1	25	146	16.5	124	14.0	127	14.4	2.717	69.0		
	2-1/2	60	351	39.7	298	33.7	181	20.5	4.557	115.7	0.453	11.5
	4	100	474	53.6	403	45.5	181	20.5	6.308	160.2		
16	1-1/2	38	238	26.9	200	22.6	271	30.6	3.711	94.3		
	3	75	488	55.1	410	46.3	271	30.6	5.049	128.2	0.492	12.5
	5	125	664	75.0	558	63.0	271	30.6	7.292	185.2		
20	2	50	497	56.2	418	47.2	550	62.2	4.286	108.9		
	4	100	1290	145.8	1084	122.5	733	82.9	6.721	170.7	0.61	15.5
	6	150	1772	200.2	1488	168.1	733	82.9	9.034	229.5		
25	2	50	796	89.9	668	75.5	991	112	4.488	114.0		
	4	100	1592	179.9	1338	151.2	991	112	6.811	173.0	0.748	19.0
	6	150	2112	238.6	1774	200.4	991	112	9.194	233.5		

For more detail in determining table deflection; se page 5A-22 for pitch, page $5 \mathrm{~A}-24$ for yaw, and page $5 \mathrm{~A}-26$ for roll.

ENGINEERING DATA: SERIES STP SLIDES WITH RAIL BEARING

3 STATIC DEFLECTIONS IN PITCH
The graphs on this page show table pitch deflection due to static moment loads applied at distance Ah from bearing center while the unit is extended.

SIZE			TRAVEL	
	mm	MOMENT ARM		
	mm			
	1	25	2.442	62.0
	2	50	3.830	97.3
	3	75	4.914	124.8
12	1	25	2.717	69.0
	$2-1 / 2$	60	4.557	115.7
	4	100	6.308	160.2
16	$1-1 / 2$	38	3.711	94.3
	3	75	5.049	128.2
	5	125	7.292	185.2
20	2	50	4.286	108.9
	4	100	6.721	170.7
	6	150	9.034	229.5
25	2	50	4.488	114.0
	4	100	6.811	173.0
	6	150	9.194	233.5

All tabulated and plotted values are typical and were determined empirically.

ENGINEERING DATA: sERIES STP SLIDES WITH RAIL BEARING

IMPERIAL EXAMPLE:

Determine the pitch deflection of a STPD125 x 6 slide at the center of gravity (OG) of a 10 lb load weight attached to the tool plate. The OG of the load is 2" further from the tool plate.

Calculate the moment of the application and the equivalent load at distance Ah.

$$
\begin{aligned}
\text { Mp } & =\text { Load } \times(\text { Ah distance }+ \text { OGdistance }) \\
& =10 \times(9.194+2)=112 \text { in-lb }
\end{aligned}
$$

Equivalent load $=(\mathrm{Mp} / \mathrm{Ah})=112 / 9.194=12 \mathrm{lb}$
Read the graph for a 12 lb load, deflection is approximately .003 ".

$$
\begin{aligned}
\text { Deflection Ratio } & =\text { Deflection at tool plate } / \text { Ah distance } \\
& =.003 / 9.194=3.26 \times 10^{-4}
\end{aligned}
$$

Deflection at load $=$ Deflection Ratio $\times(\mathrm{Ah}+\mathrm{OG})$

$$
=3.26 \times 10^{-4} \times(9.194+2)=.0037^{\prime \prime}
$$

METRIC EXAMPLE:

Determine the pitch deflection of a STPD525 x 150 slide at the center of gravity (OG) of a 45 N load weight attached to the tool plate. The OG of the load is 50 mm further from the tool plate.

Calculate the moment of the application and the equivalent load at distance Ah.

Mp = Load x (Ah distance + OG distance) / 1000

$$
=45 \times(233.5+50) / 1000=12.76 \mathrm{Nm}
$$

Equivalent load $=(M p / A h) \times 1000=12.76 / 233.5 \times 1000=55 N$
Read the graph for a 55 N load, deflection is approximately .08 mm .
Deflection Ratio $=$ Deflection at tool plate / Ah distance

$$
=.08 / 233.5=3.4 \times 10^{-4}
$$

Deflection at load $=$ Deflection Ratio $\times(\mathrm{Ah}+\mathrm{OG})$

$$
=3.4 \times 10^{-4} \times(233.5+50)=.096 \mathrm{~mm}
$$

ENGINEERING DATA: SERIES STP SLIDES WITH RAIL BEARING

3 STATIC DEFLECTIONS IN YAW
The graph below shows table yaw deflection due to static moment loads applied at distance Ah from bearing center with the unit extended.

SIZE	TRAVEL in		moMENT ARM ma	
	mm			
	1	25	2.442	62.0
	2	50	3.830	97.3
	3	75	4.914	124.8
12	1	25	2.717	69.0
	$2-1 / 2$	60	4.557	115.7
	4	100	6.308	160.2
16	$1-1 / 2$	38	3.711	94.3
	3	75	5.049	128.2
	5	125	7.292	185.2
20	2	50	4.286	108.9
	4	100	6.721	170.7
	6	150	9.034	229.5
25	2	50	4.488	114.0
	4	100	6.811	173.0
	6	150	9.194	233.5

All tabulated and plotted values are typical and were determined empirically.

ENGINEERING DATA: SERIES STP SLIDES WITH RAIL BEARING

IMPERIAL EXAMPLE:

Determine the yaw deflection of a STPD125 $\times 6$ slide at the center of gravity (OG) of a 10 lb load weight attached to the tool plate. The OG of the load is 2" further from the tool plate.

Calculate the moment of the application and the equivalent load at distance Ah.

$$
\begin{aligned}
\text { Mp } & =\text { Load } \times(\text { Ah distance }+ \text { OG distance }) \\
& =10 \times(9.194+2)=112 \text { in-lb }
\end{aligned}
$$

Equivalent load $=(\mathrm{My} / \mathrm{Ah})=112 / 9.194=12 \mathrm{lb}$
Read the graph for a 12 lb load, deflection is approximately $.0015^{\prime \prime}$.
Deflection Ratio $=$ Deflection at tool plate $/$ Ah distance

$$
=.0015 / 9.194=1.63 \times 10^{-4}
$$

Deflection at load $=$ Deflection Ratio $\times(A h+O G)$

$$
=1.63 \times 10^{-4} \times(9.194+2)=.0018 \text { " }
$$

METRIC EXAMPLE:

Determine the yaw deflection of a STPD525 x 150 slide at the center of gravity (OG) of a 45 N load weight attached to the tool plate. The OG of the load is 50 mm further from the tool plate.

Calculate the moment of the application and the equivalent load at distance Ah.

My = Load x (Ah distance + OG distance) / 1000

$$
=45 \times(233.5+50) / 1000=12.76 \mathrm{Nm}
$$

Equivalent load $=(M y / A h) \times 1000=12.76 / 233.5 \times 1000=55 N$
Read the graph for a 55 N load, deflection is approximately .04 mm .
Deflection Ratio $=$ Deflection at tool plate $/$ Ah distance

$$
=.04 / 233.5=1.71 \times 10^{-4}
$$

Deflection at load $=$ Deflection Ratio $\times(A h+O G)$

$$
=1.71 \times 10^{-4} \times(233.5+50)=.048 \mathrm{~mm}
$$

ENGINEERING DATA: SERIES STP SLIDES WITH RAIL BEARING

3 STATIC DEFLECTION IN ROLL
The graph on this page shows table roll deflection due to static moment loads applied at distance L from the center of the bearing. Values plotted in graphs were measured at point indicated.

	TRAVEL in mm	DISTANCE L		$\begin{gathered} \text { DISTANCE } \\ \text { AR } \end{gathered}$	
SIZE		in	mm	in	mm
08	1 25 2 50 3 75	2	51	0.827	21.0
12	$\begin{array}{cc} 1 & 25 \\ 2-1 / 2 & 60 \\ 4 & 100 \end{array}$	2.5	64	1.042	26.5
16	$\begin{array}{\|cc} \hline 1-1 / 2 & 38 \\ 3 & 75 \\ 5 & 125 \end{array}$	3.5	89	1.418	36.0
20	2 50 4 100 6 150	4.5	114	1.515	38.5
25	2 50 4 100 6 150	6	152	1.811	46.0

All tabulated and plotted values are typical and were determined empirically.

ENGINEERING DATA: SERIES STP SLIDES WITH RAIL BEARING

IMPERIAL EXAMPLE:

Determine the roll deflection of a STPD125 x 6 slide at the center of gravity (OG) of a 10 lb load weight at 4 " from the center of the slide.

Calculate the moment of the application and the equivalent load at distance L.

$$
\begin{aligned}
\mathrm{Mr} & =\text { Load } \times \text { Distance to OG of load } \\
& =10 \times 4=40 \text { in-lb }
\end{aligned}
$$

Equivalent load at $L=M r / L=40 / 6=6.66 \mathrm{lb}$
Read the graph for a 6.7 lb load, deflection is approximately .0005 ". (This is at AR distance of 1.811)

Deflection Ratio $=$ Deflection at AR / AR distance

$$
=.0005 / 1.811=2.76 \times 10^{-4}
$$

Deflection at load = Deflection Ratio \times (OGdistance)

$$
=2.76 \times 10^{-4} \times 4=.0011^{\prime \prime}
$$

METRIC EXAMPLE:

Determine the roll deflection of a STPD5 25×150 slide at the center of gravity (OG) of a 45 N load weight at 102 mm from center of the slide.

Calculate the moment of the application and the equivalent load at distance L.
$\begin{aligned} \mathrm{Mr} & =\text { Load } \times \text { Distance to OG of load } / 1000 \\ & =45 \times 102 / 1000=4.59 \mathrm{Nm}\end{aligned}$
Equivalent load at $\mathrm{L}=(\mathrm{Mr} / \mathrm{L}) \times 1000=(4.59 / 152) \times 1000=30.2 \mathrm{~N}$
Read the graph for a 30.2 N load, deflection is approximately .013 mm . (This is at AR distance of 46 mm .)

Deflection Ratio $=$ Deflection at AR / AR distance

$$
=.013 / 46=2.82 \times 10^{-4}
$$

Deflection at load $=$ Deflection Ratio \times (OGdistance)

$$
=2.82 \times 10^{-4} \times 102=.029 \mathrm{~mm}
$$

SLIDE SIZING EXAMPLE: SERIES STP SLIDES WITH RAIL bearing

IMPERIAL

Step 1: Determine Application Data Pick and place application as shown. Total Weight of vertical slide $=4.8 \mathrm{lb}$ Total Weight of gripper and tooling $=.6 \mathrm{lb}$ Total Weight of gripped object $=.1 \mathrm{lb}$ Operating pressure $=80 \mathrm{psi}$
Required Travel = 5"
OGDist =1"

METRIC

Step 1: Determine Application Data Pick and place application as shown. Total Weight of vertical slide $=21.4 \mathrm{~N}$ Total Weight of gripper and tooling $=2.7 \mathrm{~N}$
Total Weight of gripped object $=.4 \mathrm{~N}$
Operating pressure $=5.5$ bar
Required Travel $=125 \mathrm{~mm}$
OGDist $=25 \mathrm{~mm}$

Step 2: Determine the Total Weight of the system and the required thrust of the slide.
Calculate the Total Weight of the system:
Weight of attached slide $=\quad 4.8$
Weight of gripper and tooling = . 6
Weight of gripped object $=\quad \frac{.1}{5.5 \mathrm{lb}}$
Total Weight $=$
Weight =
Since the application is horizontal, thrust calculation is not required at this step due to very low friction values.

Size 16 would be the minimum requirement based on the necessary travel.

Step 3: Determine static and dynamic moment capacity First check size 16 for moment capacity.
From the Static Moment Chart for Yaw moment, Maximum yaw moment (My) for a 5" travel = 558 in- lb and $\mathrm{Ah}=7.292^{\prime \prime}$
$M y=(A h+O G) \times$ LOAD (Total Weight)
My Static $=(7.292+1) \times 5.5=45.6$ in-lb, okay statically
My Dynamic $=558 / 10=55.8$ in-lb, okay dynamically
Since Dynamic moment of the system is less than 55.8 , the size 16 can be used.

Step 4: Determine the amount of Deflection
From the yaw deflection graphs, determine the amount of deflection at the tool plate by using the Total Weight calculated above and finding the crossing point for a size 16×5.
Approximately .004 of deflection at the tool plate for this application.
Note: Dynamic forces from the attached slide and gripper can cause higher deflections than the value just calculated depending on deceleration methods.
Step 5: Calculate Stopping Capacity - see page 5A-35

Step 2: Determine the Total Weight of the system and the required thrust of the slide.

Calculate the Total Weight of the system:
Weight of attached slide $=\quad 21.4$
Weight of gripper and tooling $=2.7$
Weight of gripped object $=\quad \frac{.4}{24.5 \mathrm{~N}}$
Total Weight $=$
Since the application is horizontal, thrust calculation is not required at this step due to very low friction values.
Size 16 would be the minimum requirement based on the necessary travel.

Step 3: Determine static and dynamic moment capacity First check size 16 for moment capacity.

From the Static Moment Chart for Yaw moment, Maximum yaw moment (My) for a 125 mm travel $=63 \mathrm{Nm}$ and $\mathrm{Ah}=185.2 \mathrm{~mm}$
$M y=(A h+O G) \times$ LOAD (Total Weight)
My Static $=(.1852+.025) \times 24.5=5.1 \mathrm{Nm}$, okay statically
My Dynamic $=63 / 10=6.3 \mathrm{Nm}$, okay dynamically
Since Dynamic moment of the system is less than 6.3, the size 16 can be used.

Step 4: Determine the amount of Deflection
From the yaw deflection graphs, determine the amount of deflection at the tool plate by using the Total Weight calculated above and finding the crossing point for a size 16×125.

Approximately .10 mm of deflection at the tool plate for this application.
Note: Dynamic forces from the attached slide and gripper can cause higher deflections than the value just calculated depending on deceleration methods.

Step 5: Calculate Stopping Capacity - see page 5A-35

OPTIONS: SERIES STP SLIDES WITH RAIL BEARING

AE1
 TRAVEL ADJUSTMENT AND SHOCK PAD ON EXTEND IN POSITION 1

This option provides travel adjustment with a shock pad on extend in position 1. Shock pads provide excellent noise reduction and energy absorption capability. Travel on extend can be reduced by a maximum of ' A ' shown in the table below. Adjust travel adjustment screw to the required position using ' G ' hex wrench and lock into place using ' F hex wrench. Refer to page 5A-35 for stopping capacity of the shock pad.

TRAVEL ADJUSTMENT AND SHOCK PAD ON EXTEND IN POSITION 2

This option provides travel adjustment with a shock pad on extend in position 2. Shock pads provide excellent noise reduction and energy absorption capability. By using -AE1 and -AE2 options together, yaw moments are greatly reduced and may eliminate the need for a shock absorber. Travel on extend can be reduced by a maximum of ' A ' shown in the table below. Adjust travel adjustment screw to the required position using ' G hex wrench and lock into place using ' F hex wrench. Refer to page 5A-35 for stopping capacity of the shock pad.

	TRAVEL		A		B		C		D		E		$\begin{gathered} \hline F \\ \text { HEX } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{G} \\ \mathrm{HEX} \\ \hline \end{gathered}$
SIZE	in	mm												
08	1	25	. 650	16.5	2.953	75.0	. 591	15.0	. 752	19.1	0.74	18.9	2 mm	3 mm
	2	50	. 827	21.0	3.779	96.0	-	-						
	3	75	. 827	21.0	4.783	121.5	-	-						
12	1	25	. 749	19.0	2.755	70.0	. 120	3.0	1.022	26.0	0.96	24.3	2.5 mm	3 mm
	2-1/2	60	. 944	24.0	4.490	114.0	-	-						
	4	100	1.122	28.5	6.081	154.5	-	-						
16	1-1/2	38	. 945	24.0	3.662	93.0	. 039	1.0	1.181	30.0	1.260	32	2.5 mm	5 mm
	3	75	1.122	28.5	4.981	126.5	-	-						
	5	125	1.102	28.0	6.989	177.5	-	-						
20	2	50	1.281	32.5	4.152	105.5	-	-	1.447	36.8	1.42	36	2.5 mm	6 mm
	4	100	1.654	42.0	6.576	167.0	-	-						
	6	150	1.299	33.0	8.896	226.0	-	-						
25	2	50	1.437	36.5	4.487	114.0	. 354	9.0	1.810	46.0	1.71	43.5	3 mm	6 mm
	4	100	1.181	30.0	6.732	171.0	-	-						
	6	150	1.122	28.5	8.800	223.5	-	-						

AR
 TRAVEL ADJUSTMENT AND SHOCK PAD ON RETRACT

This option provides travel adjustment with a shock pad on retract. Shock pads provide excellent noise reduction and energy absorption capability. Travel on retract can be reduced by a maximum of ' A ' shown in the table below. Adjust travel adjustment screw to the required position using ' B ' hex wrench and lock into place using ' C hex wrench. Refer to page 5A-35 for stopping capacity of the shock pad.

	A		B	C
SIZE	in	mm	HEX	HEX
08	.512	13.0	2 mm	3 mm
12	.669	17.0	4 mm	5 mm
16	.984	25.0	5 mm	6 mm
20	1.063	27.0	6 mm	8 mm
25	1.063	27.0	6 mm	10 mm

All dimensions are reference only unless specifically toleranced.

OPTIONS: SERIES STP SLIDES WITH RAIL BEARING

This option provides a compromise fit between clearance and interference. Transitional fits are used where accuracy of location is important, but a small amount of clearance is permissible.

PRECISION FIT DOWEL PIN HOLES

This option provides a H7 tolerance precision fit with dowel pins. Precision fits are used where accuracy of location is of prime importance and for parts requiring rigidity and alignment.

Ø R DOWEL HOLE	TOLERANCE		
	STANDARD	J3 OPTION	J8 OPTION
3 mm	+.0004/-. 0009	+.0013/+. 0003	+.0004/-.0000
	[+.010/.-024]	[$+.033 /+.008$]	[$+.010 /-.000]$
4 mm	+.0004/-.0009	+.0015/+.0005]	+.0005/-.0000
	[+.010/.-024]	[$+.033 /+.008$]	[$+.010 /-.000]$
5 mm	+.0004/-.0009	+.0015/+.0004]	+.0005/-.0000
	[+.010/.-024]	[$+.038 /+.010$]	[+.012/-000]
6 mm	+.0004/-.0009	+.0015/+.0005]	+.0005/-.0000
	[+.010/..024]	[+.038/+.013]	[$+.012 /-.000$]

DIAMETRAL ZONE

BILATERAL ZONE

OPTIONS: SERIES STP SLIDES WITH RAIL BEARING

M MAGNET FOR PHD SERIES 6790 MINIATURE REED AND SOLID STATE SWITCHES

This option equips the unit with a magnetic piston for use with PHD's Series 6790 Switch. The switch housing is completely contained by the slide housing and provides a very compact switch design. The switches mount easily into two small grooves located on the side of the slide housing and are locked into place with a set screw.

REED BENEFITS

- Available as 4.5-30 VDC model for simple interfacing to sequencers and programmable controllers.
- Can be used to directly drive some types of relays or valve solenoids within the switch specifications stated.

SPECIFICATIONS	$67902 \& 67922$
OPERATING PRINCIPLE	Magnetic Reed
ACTUATED BY	Piston Magnet
INPUT VOTAGE	$4.5-30$ VDC
OUTPUT TYPE	Contact Cosure
CURRENT RATING	50 mA Max.
CONTACT RESISTANCE	.115 Ohm Max.
QNVIRONMENTAL	IP67
OPERATING TEMP.	-20° to $85^{\circ} \mathrm{C}$

SIZE	REPEATABILITY	HYSTERESIS MAXIMUM	BINIMUM/MAXIMUM	
MINIDTH				
08	$\pm .005[\pm .13]$	$.060[1.5]$	$.360 / .690$	$[9.1 / 17.5]$
12	$\pm .005[\pm .13]$	$.080[2.0]$	$.230 / .340$	$[5.8 / 8.6]$
16	$\pm .005[\pm .13]$	$.075[1.9]$	$.340 / .440$	$[8.6 / 11.2]$
20	$\pm .005[\pm .13]$	$.085[2.2]$	$.130 / .360$	$[3.3 / 9.1]$
25	$\pm .004[\pm .10]$	$.070[1.8]$	$.300 / .425$	$[7.6 / 10.8]$

PART NO.

67902-1-02
67902-1-05 NPN (Sink) or PNP (Source) DC Reed, 5 m cable
67903-1-02 NPN (Sink) DC Solid State, 2 m cable
67903-1-05 NPN (Sink) DC Solid State, 5 m cable
67904-1-02 PNP (Source) DC Solid State, 2 m cable
67904-1-05 PNP (Source) DC Solid State, 5 m cable
67922-1 NPN (Sink) or PNP (Source) DC Reed, Quick Connect
67923-1 NPN (Sink) DC Solid State, Quick Connect
67924-1 PNP (Source) DC Solid State, Quick Connect
63549-02 2 m Cordset with Quick Connect
63549-05 5 m Cordset with Quick Connect

SOLID STATE BENEFITS

- Solid state switches afford long life. Constant amplitude output allows use with most digital logic systems.
- Switch circuitry protects against voltage surges and other electrical anomalies associated with operating systems.
- Excellent switch hysteresis characteristics and symmetry.
- Offered in 4.5-30 VDC current sinking and current sourcing versions for simple interfacing to electronic system controllers.

SPECIFICATIONS	$\mathbf{6 7 9 0 3 ~ \& ~ 6 7 9 2 3 ~} \mathbf{6 7 9 0 4}$ \& $\mathbf{6 7 9 2 4}$
OPRATINGPRINCIPLE	Solid State
ACTUATED BY	Piston Magnet
INPUT VOLTAGE	$4.5-30$ VDC
OUTPUT TYPE	PNP (Source)
CURRENT RATING	$50 \mathrm{~mA} . \mathrm{Max}$
VOLTAGE DROP	.5 VDC
SWITCH BURDEN	10 mA. Max.
ENVIRONMENTAL	IP67
OPERATING TEMP.	-20° to $85^{\circ} \mathrm{C}$

SIZE	REPEATABILITY	HYSTERESIS MAXIMUM	BAND WIDTH MINIMUM/MAXIMUM	
08	$\pm .007[\pm .18]$	$.065[1.7]$	$.320 / .580$	$[8.1 / 14.7]$
12	$\pm .007[\pm .18]$	$.095[2.4]$	$.300 / .450$	$[7.8 / 11.5]$
16	$\pm .007[\pm .18]$	$.095[2.4]$	$.330 / .510$	$[8.4 / 13.0]$
20	$\pm .005[\pm .13]$	$.110[2.8]$	$.190 / .380$	$[4.8 / 9.6]$
25	$\pm .005[\pm .13]$	$.080[2.0]$	$.320 / .470$	$[8.1 / 11.9]$

MALE QUICK CONNECT DETAIL

MEIRICINFORMATIONSHOWNIN[]

63549-xx CORDSET WITH FEMALE QUICK CONNECT

OPTIONS: SERIES STP SLIDES WITH RAIL BEARING

SOLID STATE WIRING SCHEMATICS

MODEL NO. 67903-1 \& 67923-1 - NPN (SINK)
INPUT: 4.5-30 VDC
LOAD CURRENT: 50 mA . MAX. SWITCH HOUSING COLOR: BLACK
(Bi-polar LED emits a yellow light)
CABLED MODEL 67903

QUICK CONNECT MODEL 67923

MODEL NO. 67904-1 \& 67924-1 - PNP (SOURCE) INPUT: 4.5-30 VDC
LOAD CURRENT: 50 mA . MAX.
SWITCH HOUSING COLOR: BLACK
(Bi-polar LED emits a red light.)
CABLED MODEL 67904

QUICK CONNECT MODEL 67924

REED WIRING SCHEMATICS

MODEL NO. 67902-1 \& 67922-1 - NPN (SINK) OR PNP (SOURCE)
INPUT: 4.5-30 VDC
LOAD CURRENT: 50 mA . MAX.
SWITCH HOUSING COLOR: BLACK
(LED emits a red light)
CABLED MODEL 67902 - NPN (SINK)

QUICK CONNECT MODEL 67922 - NPN (SINK)

CABLED MODEL 67902 - PNP (SOURCE)

QUICK CONNECT MODEL 67922 - PNP (SOURCE)

NE1x SHOCK ABSORBER installed ON EXTEND IN POSITION 1

This option provides shock absorbers and travel adjustment on extend in position 1. Travel on extend can be reduced by a maximum of ' A ' shown in the table below. Adjust shock absorber screw to the required position using a large screwdriver and lock into place using ' F hex wrench. Refer to page 5A-36 for shock absorber selection requirements.

SHOCK ABSORBER INSTALLED ON EXTEND IN POSITION 2

This option provides shock absorbers and travel adjustment on extend in position 2. Travel on extend can be reduced by a maximum of ' A ' shown in the table below. Adjust shock absorber screw to the required position using a large screwdriver and lock into place using ' F hex wrench. Refer to page 5A-36 for shock absorber selection requirements.

SIZE	TRAVEL		A		B		C		D		E		$\begin{gathered} \hline F \\ \text { HEX } \\ \hline \end{gathered}$
	in	mm		mm									
08	1	25	. 650	16.5	2.953	75.0	. 591	15.0					2 mm
	2	50	. 827	21.0	3.779	96.0	-	-	. 752	19.1	0.743	18.9	
	3	75	. 827	21.0	4.783	121.5	-	-					
12	1	25	1.064	27.0	2.755	70.0	. 433	11.0	1.022	26.0	0.96	24.4	2.5 mm
	2-1/2	60	0.828	21.0	4.490	114.0		-					
	4	100	0.866	22.5	6.081	154.5	-	-					
16	1-1/2	38	. 945	24.0	3.662	93.0	. 039	1.0	1.181	30.0	1.260	32	2.5 mm
	3	75	1.122	28.5	4.981	126.5	-	-					
	5	125	1.102	28.0	6.989	177.5	-	-					
20	2	50	1.280	32.5	4.152	105.5	-	-	1.447	36.8	1.42	36	2.5 mm
	4	100	1.280	32.5	6.576	167.0	-	-					
	6	150	1.280	32.5	8.896	226.0	-	-					
25	2	50	1.772	45.0	4.487	114.0	. 669	17.0	1.810	46.0	1.712	43.5	3 mm
	4	100	1.516	38.5	6.732	171.0	-	-					
	6	150	1.457	37.0	8.800	223.5	-	-					

OPTIONS: SERIES STP SLIDES WITH RAIL BEARING

FOR SIZE 08 ONLY

NRx
 SHOCK ABSORBER INSTALLED ON RETRACT

This option provides shock absorbers and travel adjustment on

A		D		E $^{\text {in }}$		mm	in	mm
in	mm	in	mm	in $^{\text {G }}$ mm				
.905	23.0	.728	18.5	2.008	51.0	.901	22.9	1.151

FOR SIZES 12, 16, 20, \& 25

This option provides shock absorbers and travel adjustment on retract. Travel on retract can be reduced by a maximum of ' A ' shown in the table below. Adjust travel to the required position using 'B' hex wrench and lock into place using ' C ' hex wrench. Refer to page 5A-36 for shock absorber selection requirements.

		C		
MODEL	in	mm	BEX	C
HEX				
STPxx12	.512	13.0	4 mm	5 mm
STPxx16	.984	25.0	5 mm	6 mm
STPxx20	1.063	27.0	6 mm	8 mm
STPxx25	1.063	27.0	6 mm	10 mm

Q6 CORROSION RESISTANT GUIDE SHAFTS

This option provides stainless steel guide shafts with hard chrome plating, for use in applications where the standard shaft ends may corrode.

ACCESSORIES: SERIES STP SLIDES WITH RAIL BEARING

MODULAR MOUNTING KITS

Modular design of the Series STP housings and tool plates allow slide units to bolt and dowel together without the need for a transition plate. See chart for slide compatibility and hardware kits required. Each kit contains 2 dowel pins and 2 SHCS to mount the units together. Series STP units can also be bolted directly together as shown. PHD recommends that a-J3 option (transitional fit) be specified with the slide ordering data to allow the units to dowel together properly.

		KIT NUMBERS	
PRIMARY	SECONDARY	IMPERIAL	METRIC
STPDx08	STPDx08	$68125-01$	$68125-02$
STPDx12	STPDx12	$70770-01$	$70770-02$
STPDx16	STPDx16	$68053-01$	$68053-02$
STPDx20	STPDx20	$70870-01$	$70870-02$
STPDx25	STPDx25	$68043-01$	$68043-02$

STOPPING CAPACITY: SERIES STP SLIDES WITH RAIL BEARING

STOPPING CAPACITY SELECTION

To determine stopping capacity, calculate total moving weight. From Table 1, determine slide standard moving weight, add any additional weight adders due to options and add attached payload. This will be total moving weight WTM .

Example: STPD125 x $2-A E 1-A E 2$ with 10 lb load [STPD525 x 50-AE1-AE2 with 44.5 N load]
$\mathrm{W}_{\text {тм }}=2.6 \mathrm{lb}+.29 \mathrm{lb}+.29 \mathrm{lb}+10 \mathrm{lb}=13.18 \mathrm{lb}$ [11.6 N +1.29 N +1.29 N + 44.5 N = 58.68 N]

Using the Kinetic Energy Graphs below, plot the total moving weight against impact velocity. If the value plotted is below the curve, then shock pads are an adequate deceleration method. If it is above the curve, hydraulic shock absorbers are required.

To determine the correct hydraulic shock absorber, complete the calculations on the next page.

TABLE 1

SIZE	TRAVEL in mm		STPMOVING WEIGHT		WEGGT ADDERS -AE1, -AE2, -NE1x, -NE2x		PISTON AREA EXTEND		PISTON AREA RETRACT	
08	1	25	0.24	1.1						
	2	50	0.36	1.6	0.06	0.27	0.16	101	0.12	75
	3	75	0.40	1.8						
12	1	25	0.42	1.9						
	2-1/2	60	0.60	2.7	0.09	0.42	0.35	226	0.26	170
	4	100	0.78	3.4						
16	1-1/2	38	0.9	4.0						
	3	75	1.1	4.9	0.13	0.58	0.62	402	0.47	302
	5	125	1.4	6.2						
20	2	50	1.4	6.2						
	4	100	1.9	8.5	0.20	0.91	0.97	628	0.73	471
	6	150	2.4	10.7						
25	2	50	2.6	11.6						
	4	100	3.6	16.0	0.29	1.29	1.52	982	1.17	756
	6	150	4.3	19.1						

MAXIMUM ALLOWABLE KINETIC ENERGY GRAPHS FOR SHOCK PADS

SHOCK ABSORBER SELECTION GUIDE: SERIES STP

SIZE	$\begin{gathered} \text { PHD } \\ \text { SHOCK } \\ \text { ABSORBER } \\ \text { NO. } \\ \hline \end{gathered}$	STROKE		THREAD TYPE	ET TOTAL ENERGY PER CYCLE		$\begin{gathered} \text { ECC } \\ \text { TOTAL ENERGY } \\ \text { PER HOUR } \end{gathered}$		$\begin{gathered} \mathrm{FG}_{\mathrm{G}} \\ \text { MAX PROPELLING } \\ \text { FORCE } \end{gathered}$		
				in-lb	Nm	in-lb	Nm	lb	N		
08 \& 12	68149-01-x	. 210	. 0053		M8 x1	20	2.26	50,000	5654	45	200
16	68015-01-x	. 240	. 0061	M10 $\times 1$	40	4.52	110,000	12439	80	356	
20	70861-01-x	. 400	. 0102	M12 $\times 1$	65	7.35	250,000	28269	120	534	
25	67127-01-x	. 448	0114	M14 $\times 1.5$	135	15.26	260,000	29400	200	890	

SHOCK ABSORBER SIZING CALCULATION:

Follow the next six steps to size shock absorbers.
STEP 1: Identify the following parameters. These must be known for all energy absorption calculations. Variations or additional information may be required in some cases.
A. The total moving weight (WTM) to be stopped. (completed from prior page)
B. The slide velocity (V) at impact with the shock absorber.
C. Number of cycles per hour.
D. Orientation of the application's motion (i.e. horizontal or vertical application). See the next two pages.
E Operating pressure
STEP 2: Calculate the kinetic energy of the total moving weight.

$$
\mathrm{E}_{\mathrm{K}}(\mathrm{in}-\mathrm{lb})=.5 \times \frac{W_{\text {TM }}}{386} \times \mathrm{V}^{2} \quad \mathrm{E}_{\mathrm{K}}(\mathrm{Nm})=.5 \times \frac{\mathrm{W}_{\text {TM }}}{9.8} \times \mathrm{V}^{2}
$$ or

Note: WTm in kg mass may

$$
\text { be substituted for } \frac{W_{T M}}{9.8}
$$

$\mathrm{EK}_{\mathrm{K}}(\mathrm{Nm})=.5 \times \mathrm{W}_{\mathrm{T}} \mathrm{M} \times \mathrm{V}^{2}$

STEP 3: Calculate the propelling force (FD_{D}) for both extend and retract. Refer to previous page for Efective Piston Areas.

Horizontal application: $\mathrm{FD}=$ Effective Piston Areax P Vertical application: $F D=($ Efective Piston Areax $P) \pm W_{t M}$ + indicates working with gravity, - indicates working against gravity Note: when using mm^{2} and bar units, it will be necessary to multiply the Effective Piston Areax P by a factor of .1 to obtain the correct unit of measure.
Use Shock Absorber Specification Chart to verify that the selected unit has an FG_{G} capacity greater than the value just calculated. If not, select a larger shock absorber or slide.
Calculate the work energy input ($\mathrm{E} w=\mathrm{FD} \times \mathrm{S}$) using the travel of the shock absorber selected.

STEP 4: Calculate the total energy. $\mathrm{E}_{\mathrm{T}}=\mathrm{E}_{\mathrm{k}}+\mathrm{E}_{\mathrm{w}}$ Use Shock Absorber Specification Chart to verify that the selected unit has an Er capacity greater than the value just calculated. If not, select a larger shock absorber or slide.

STEP 5: Calculate the total energy that must be absorbed per hour ($\mathrm{E}_{\mathrm{T}} \mathrm{C}$. $\mathrm{ETC}=\mathrm{Et}_{\mathrm{T}} \times \mathrm{C}$
Use Shock Absorber Specification Chart to verify that the selected unit has an ETC capacity greater than the value just calculated. If not, select a larger shock absorber or slide.

STEP 6: Determine the damping constant for the selected shock absorber. Using the appropriate Shock Absorber Performance Graph, locate the intersection point for impact velocity (V) and total energy (ET). The area (-2 or -3) that the point falls in is the correct damping constant for the application.

SYMBOLS DEFINITIONS

C = Number of cycles per hour
= Oylinder bore diameter inch [mm]
$=$ Kinetic energy in- $\mathrm{Ib}[\mathrm{Nm}$]
$=$ Total energy per cycle, $\mathrm{E} \times+\mathrm{Ew}$ in- $\mathrm{lb}[\mathrm{Nm}]$
$\mathrm{EC}=$ Total energy per hour in-lb/hr [$\mathrm{Nm} / \mathrm{hr}$]
Ew = Work or drive energy in-lb [Nm]
= Propelling force lb [N]
$=$ Max Propelling force $\mathrm{lb}[\mathrm{N}]$
= Operating pressure psi [bar]
= Stroke of shock absorber inch [m]
$=$ Impact velocity in/sec [m/sec]
$\mathrm{W}_{\mathrm{m}}=$ Total moving weight lb [N or kg]

SHOCK ABSORBER SELECTION GUIDE: SERIES STP

SIZING EXAMPLE: HORIZONTAL APPLICATION

IMPERIAL

STEP 1: Application Data

Example: STPD125 x 6 -NEx-NRx with a 20 lb payload on extend and 1 lb on retract.
A) $\mathrm{W}_{\text {TM }}=$ Total moving weight $=$ std moving + option adder + load

Extend $=2.6 \mathrm{lb}+.29 \mathrm{lb}+20 \mathrm{lb}=22.89 \mathrm{lb}$
Retract $=2.6 \mathrm{lb}+.29 \mathrm{lb}+1 \mathrm{lb}=3.89 \mathrm{lb}$
B) Velocity at impact: $V_{E}=15 \mathrm{in} / \mathrm{sec}$ (extend), $V_{R}=20 \mathrm{in} / \mathrm{sec}$ (retract)
C) Number of cycles/hour: C=800 cycles/hr
D) Application type: Horizontal
E) Operating pressure: 80 psi

STEP 2: Calculate the kinetic energy
$\mathrm{E}_{\mathrm{K}}=.5 \times \mathrm{W}_{\mathrm{T}} \times \mathrm{V}^{2} / 386$
Extend $=.5 \times 22.89 \times 15^{2} / 386=6.67 \mathrm{in}-\mathrm{lb}$
Retract $=.5 \times 3.89 \times 20^{2} / 386=2.02 \mathrm{in}-\mathrm{lb}$
STEP 3: Calculate the propelling force and work energy $\mathrm{FD}=$ Effective Piston Area \times Operating Pressure
Extend $=1.52 \times 80=121.6 \mathrm{lb}$
Retract $=1.17 \times 80=93.6 \mathrm{lb}$
Use the Shock Absorber Specification Chart to verify that the selected unit has an FG capacity greater than the value just calculated.
$\mathrm{E} v=\mathrm{FD} \times \mathrm{S}$
Extend $=121.6 \times .448=54.5 \mathrm{in}-\mathrm{lb}$
Retract $=93.6 \times .448=41.9 \mathrm{in}-\mathrm{lb}$
STEP 4: Calculate the total energy: $\mathrm{ET}_{\mathrm{T}}=\mathrm{E}_{\mathrm{k}}+\mathrm{Ew}_{\mathrm{w}}$
Extend $=6.67+54.5=61.17 \mathrm{in}-\mathrm{lb}$
Retract $=2.02+41.9=43.92 \mathrm{in}-\mathrm{lb}$
Use the Shock Absorber Specification Chart to verify that the selected unit has an Et capacity greater than the value just calculated.
STEP 5: Calculate the total energy per hour: ETC $=\mathrm{ET} \times \mathrm{C}$
Extend $=61.17 \times 800=48,397 \mathrm{in}-\mathrm{lb} / \mathrm{hr}$
Retract $=43.92 \times 800=35,136 \mathrm{in}-\mathrm{lb} / \mathrm{hr}$
Use the Shock Absorber Specification Chart to verify that the selected unit has and ETC capacity greater that the value calculated.
STEP 6: Determine the damping constant required
Using the appropriate Shock Absorber performance graph, locate the intersection point for impact velocity (V) and total energy (E). The area (-2 or -3) that the point falls in is the correct damping constant for the application.

Unit should be ordered with -NE3-NR2 options or select shock 67127-01-3 for extend and shock 67127-01-2 for retract.

METRIC

STEP 1: Application Data

Example: STPD525 x 150 -NEx-NRx with a 89 N payload on extend and 4.4 N on retract.
A) $\mathrm{W}_{\mathrm{T}}=$ Total moving weight $=$ std moving + option adder + load Extend $=11.6 \mathrm{~N}+1.29 \mathrm{~N}+89 \mathrm{~N}=101.89 \mathrm{~N}$
Retract $=11.6 \mathrm{~N}+1.29 \mathrm{~N}+4.4 \mathrm{~N}=17.29 \mathrm{~N}$
B) Velocity at impact: $\mathrm{V}_{\mathrm{E}}=.381 \mathrm{~m} / \mathrm{sec}$ (extend), $\mathrm{V}_{\mathrm{R}}=.51 \mathrm{~m} / \mathrm{sec}$ (retract)
C) Number of cycles/hour: $\mathrm{C}=800 \mathrm{cycles} / \mathrm{hr}$
D) Application type: Horizontal
E) Operating pressure: 5.5 bar

STEP 2: Calculate the kinetic energy
$\mathrm{E}_{\mathrm{K}}=.5 \times$ Wtм $\times \mathrm{V}^{2} / 9.8$
Extend $=.5 \times 101.89 \times .381^{2} / 9.8=.75 \mathrm{Nm}$
Retract $=.5 \times 17.29 \times .51^{2} / 9.8=.23 \mathrm{Nm}$
STEP 3: Calculate the propelling force and work energy
FD $=$ Effective Piston Area \times Operating Pressure $\times .1$
Extend $=982 \times 5.5 \times .1=540 \mathrm{~N}$
Retract $=756 \times 5.5 \times .1=416 \mathrm{~N}$
Use the Shock Absorber Specification Chart to verify that the selected unit has an FG capacity greater than the value just calculated.
$\mathrm{E} w=\mathrm{FD} \times \mathrm{S}$
Extend $=540 \times .0114=6.16 \mathrm{Nm}$
Retract $=416 \times .0114=4.74 \mathrm{Nm}$
STEP 4: Calculate the total energy: $\mathrm{ET}_{\mathrm{t}}=\mathrm{Ek}+\mathrm{Ew}$
Extend $=.75+6.16=6.91 \mathrm{Nm}$
Retract $=.23+4.74=4.97 \mathrm{Nm}$
Use the Shock Absorber Specification Chart to verify that the selected unit has an Eт capacity greater than the value just calculated.

STEP 5: Calculate the total energy per hour: ETC = ET x C
Extend $=6.91 \times 800=5,531 \mathrm{Nm} / \mathrm{hr}$
Retract $=4.97 \times 800=3,976 \mathrm{Nm} / \mathrm{hr}$
Use the Shock Absorber Specification Chart to verify that the selected unit has and ETC capacity greater that the value calculated.
STEP 6: Determine the damping constant required
Using the appropriate Shock Absorber performance graph, locate the intersection point for impact velocity (V) and total energy (E). The area (-2 or -3) that the point falls in is the correct damping constant for the application.
Unit should be ordered with -NE3-NR2 options or select shock 67127-01-3 for extend and shock 67127-01-2 for retract.

SHOCK ABSORBER SELECTION GUIDE: SERIES STP

SIZING EXAMPLE: VERTICAL APPLICATION

IMPERIAL

STEP 1: Application Data Example: STPD125 x 2 -AE1-NE1x-NRx with a 30 lb payload on extend and 1 lb on retract
A) $\mathrm{W}_{\mathrm{T}}=$ Total moving weight $=$ std moving + option adder + load
Extend $=2.6 \mathrm{lb}+.29 \mathrm{lb}+.29 \mathrm{lb}+30 \mathrm{lb}=33.18 \mathrm{lb}$ Retract $=2.6 \mathrm{lb}+.29 \mathrm{lb}+.29 \mathrm{lb}+1 \mathrm{lb}=4.18 \mathrm{lb}$

METRIC

STEP 1: Application Data

Example: STPD525 x 50 -AE1-NE1x-NRx
with a 133 N payload on extend and 4.4 N on retract
A) $\mathrm{W}_{\mathrm{T}}=$ Total moving weight $=$ std moving + option adder + load
Extend $=11.6 \mathrm{~N}+1.29 \mathrm{~N}+1.29 \mathrm{~N}+133 \mathrm{~N}=147.18 \mathrm{~N}$
Retract $=11.6 \mathrm{~N}+1.29 \mathrm{~N}+1.29 \mathrm{~N}+4.4 \mathrm{~N}=18.58 \mathrm{~N}$
B) Velocity at impact: $V_{E}=25 \mathrm{in} / \mathrm{sec}$ (extend), $V_{R}=20 \mathrm{in} / \mathrm{sec}$ (retract)
C) Number of cycles/hour: $\mathrm{C}=800 \mathrm{cycles} / \mathrm{hr}$
D) Application type: Vertical
E) Operating pressure: 80 psi

STEP 2: Calculate the kinetic energy
$\mathrm{EK}_{\mathrm{K}}=.5 \times \mathrm{W}_{\mathrm{m}} \times \mathrm{V}^{2} / 386$
Extend $=.5 \times 33.18 \times 25^{2} / 386=26.9 \mathrm{in}$ - lb
Retract $=.5 \times-4.18 \times 20^{2} / 386=-2.2$ in-lb (working against gravity)
Note: -AR option could replace-NRx option
STEP 3: Calculate the propelling force and work energy
$\mathrm{FD}=$ (Effective Piston Area \times Operating Pressure) \pm Wtm
Extend $=(1.52 \times 80)+30=151.6 \mathrm{lb}$ (working with gravity)
Retract $=(1.17 \times 80)-4.18=89.42 \mathrm{lb}$ (working against gravity)
Use the Shock Absorber Specification Chart to verify that the selected unit has an FG capacity greater than the value just calculated.
$\mathrm{E} w=\mathrm{FD} \times \mathrm{S}$
Extend $=151.6 \times .448=67.9 \mathrm{in}-\mathrm{lb}$
Retract $=89.42 \times .448=40.1 \mathrm{in}-\mathrm{lb}$
STEP 4: Calculate the total energy: $\mathrm{ET}_{\mathrm{T}}=\mathrm{E}_{\mathrm{K}}+\mathrm{Ew}$
Extend $=26.9+67.9=94.8 \mathrm{in}-\mathrm{lb}$
Retract $=-2.2+40.1=37.9 \mathrm{in}-\mathrm{lb}$
Use the Shock Absorber Specification Chart to verify that the selected unit has an Er capacity greater than the value just calculated.
STEP 5: Calculate the total energy per hour: $\mathrm{ETC}=\mathrm{Et} \times \mathrm{C}$
Extend $=94.8 \times 800=75,840 \mathrm{in}-\mathrm{lb} / \mathrm{hr}$
Retract $=37.9 \times 800=30,320 \mathrm{in}-\mathrm{lb} / \mathrm{hr}$
Use the Shock Absorber Specification Chart to verify that the selected unit has and ETC capacity greater that the value calculated.
STEP 6: Determine the damping constant required
Using the appropriate Shock Absorber performance graph, locate the intersection point for impact velocity (V) and total energy (E). The area (-2 or -3) that the point falls in is the correct damping constant for the application.
Unit should be ordered with -NE12-NR2 options or select shock 67127-01-2 for extend and shock 67127-01-2 for retract.
B) Velocity at impact: $\mathrm{V}_{\mathrm{E}}=.64 \mathrm{~m} / \mathrm{sec}$ (extend),
$\mathrm{V}_{\mathrm{R}}=.51 \mathrm{~m} / \mathrm{sec}$ (retract)
C) Number of cycles/hour: C=800 cycles/hr
D) Application type: Vertical
E) Operating pressure: 5.5 bar

STEP 2: Calculate the kinetic energy
日K $=.5 \times$ Wtm $\times \mathrm{V}^{2} / 9.8$
Extend $=.5 \times 147.18 \times .64^{2} / 9.8=3.08 \mathrm{Nm}$
Retract $=.5 \times-18.58 \times .51^{2} / 9.8=-.25 \mathrm{Nm}$ (working against gravity)
Note: -AR option could replace-NRx option
STEP 3: Calculate the propelling force and work energy
$\mathrm{FD}=$ (Effective Piston Areax Operating Pressure x .1) $\pm \mathrm{W}_{\mathrm{Tm}}$
Extend $=(982 \times 5.5 \times .1)+147.18 \mathrm{~N}=673 \mathrm{~N}$ (working with gravity)
Retract $=(756 \times 5.5 \times .1)-18.58 \mathrm{~N}=397 \mathrm{~N}$ (working against gravity)
Use the Shock Absorber Specification Chart to verify that the selected unit has an FG capacity greater than the value just calculated.
$\mathrm{E} w=\mathrm{FD} \times \mathrm{S}$
Extend $=673 \times .0114=7.67 \mathrm{Nm}$
Retract $=397 \times .0114=4.53 \mathrm{Nm}$
STEP 4: Calculate the total energy: $\mathrm{E}_{\mathrm{T}}=\mathrm{Ek}_{\mathrm{k}}+\mathrm{Ew}_{\mathrm{w}}$
Extend $=3.08+7.67=10.75 \mathrm{Nm}$
Retract $=-.25+4.53=4.28 \mathrm{Nm}$
Use the Shock Absorber Specification Chart to verify that the selected unit has an Er capacity greater than the value just calculated.
STEP 5: Calculate the total energy per hour: ETC = Et x C
Extend $=10.75 \times 800=8600 \mathrm{Nm} / \mathrm{hr}$
Retract $=4.28 \times 800=3424 \mathrm{Nm} / \mathrm{hr}$
Use the Shock Absorber Specification Chart to verify that the selected unit has and ETC capacity greater that the value calculated.
STEP 6: Determine the damping constant required
Using the appropriate Shock Absorber performance graph, locate the intersection point for impact velocity (V) and total energy (E). The area (-2 or -3) that the point falls in is the correct damping constant for the application.
Unit should be ordered with -NE12-NR2 options or select shock 67127-01-2 for extend and shock 67127-01-2 for retract.

[^0]: * TOLERANCEIS $\pm .001$ BETWETN DOWE PIN HOLES.

